19 resultados para Prepackaged commodities, Checking of.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.
Resumo:
Large software systems are developed by composing multiple programs. If the programs manip-ulate and exchange complex data, such as network packets or files, it is essential to establish that they follow compatible data formats. Most of the complexity of data formats is associated with the headers. In this paper, we address compatibility of programs operating over headers of network packets, files, images, etc. As format specifications are rarely available, we infer the format associated with headers by a program as a set of guarded layouts. In terms of these formats, we define and check compatibility of (a) producer-consumer programs and (b) different versions of producer (or consumer) programs. A compatible producer-consumer pair is free of type mismatches and logical incompatibilities such as the consumer rejecting valid outputs gen-erated by the producer. A backward compatible producer (resp. consumer) is guaranteed to be compatible with consumers (resp. producers) that were compatible with its older version. With our prototype tool, we identified 5 known bugs and 1 potential bug in (a) sender-receiver modules of Linux network drivers of 3 vendors and (b) different versions of a TIFF image library.
Resumo:
Counter systems are a well-known and powerful modeling notation for specifying infinite-state systems. In this paper we target the problem of checking liveness properties in counter systems. We propose two semi decision techniques towards this, both of which return a formula that encodes the set of reachable states of the system that satisfy a given liveness property. A novel aspect of our techniques is that they use reachability analysis techniques, which are well studied in the literature, as black boxes, and are hence able to compute precise answers on a much wider class of systems than previous approaches for the same problem. Secondly, they compute their results by iterative expansion or contraction, and hence permit an approximate solution to be obtained at any point. We state the formal properties of our techniques, and also provide experimental results using standard benchmarks to show the usefulness of our approaches. Finally, we sketch an extension of our liveness checking approach to check general CTL properties.
Resumo:
Rotor flap-lag stability in forward flight is studied with and without dynamic inflow feedback via a multiblade coordinate transformation (MCT). The algebra of MCT is found to be so involved that it requires checking the final equations by independent means. Accordingly, an assessment of three derivation methods is given. Numerical results are presented for three- and four-bladed rotors up to an advance ratio of 0.5. While the constant-coefficient approximation under trimmed conditions is satisfactory for low-frequency modes, it is not satisfactory for high-frequency modes or for untrimmed conditions. The advantages of multiblade coordinates are pronounced when the blades are coupled by dynamic inflow.
Resumo:
Sr2FeMoO6 double perovskits display low field MR at a relatively high temperature and unusual ferromagnetic properties. These compounds depicts metal to insulator transition increasing x above x(c) similar to 0.25. A comparative analysis of the near edge regions (XANES) suggests that iron is Fe3+ in the metallic range. Checking the end compounds, we found that the doped samples can be viewn as inhomogeneous distributions of the end compounds. This could help to distinguish between the two scenarios proposed to explain the metal to insulator transition. Moreover, the local atomic structure of Sr2FeMoxW1-xO6 as a function of composition (0 <= x <= 1) has been investigated by Extended X-ray absorption spectroscopy (EXAFS) a the Fe, Mo, Sr K-edges andW L-III-edge.
Resumo:
In handling large volumes of data such as chemical notations, serial numbers for books, etc., it is always advisable to provide checking methods which would indicate the presence of errors. The entire new discipline of coding theory is devoted to the study of the construction of codes which provide such error-detecting and correcting means.l Although these codes are very powerful, they are highly sophisticated from the point of view of practical implementation
Resumo:
We introduce a new class of clique separators, called base sets, for chordal graphs. Base sets of a chordal graph closely reflect its structure. We show that the notion of base sets leads to structural characterizations of planar k-trees and planar chordal graphs. Using these characterizations, we develop linear time algorithms for recognizing planar k-trees and planar chordal graphs. These algorithms are extensions of the Lexicographic_Breadth_First_Search algorithm for recognizing chordal graphs and are much simpler than the general planarity checking algorithm. Further, we use the notion of base sets to prove the equivalence of hamiltonian 2-trees and maximal outerplanar graphs.
Resumo:
An application of direct methods to dynamic security assessment of power systems using structure-preserving energy functions (SPEF) is presented. The transient energy margin (TEM) is used as an index for checking the stability of the system as well as ranking the contigencies based on their severity. The computation of the TEM requires the evaluation of the critical energy and the energy at fault clearing. Usually this is done by simulating the faulted trajectory, which is time-consuming. In this paper, a new algorithm which eliminates the faulted trajectory estimation is presented to calculate the TEM. The system equations and the SPEF are developed using the centre-of-inertia (COI) formulation and the loads are modelled as arbitrary functions of the respective bus voltages. The critical energy is evaluated using the potential energy boundary surface (PEBS) method. The method is illustrated by considering two realistic power system examples.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
Formal specification is vital to the development of distributed real-time systems as these systems are inherently complex and safety-critical. It is widely acknowledged that formal specification and automatic analysis of specifications can significantly increase system reliability. Although a number of specification techniques for real-time systems have been reported in the literature, most of these formalisms do not adequately address to the constraints that the aspects of 'distribution' and 'real-time' impose on specifications. Further, an automatic verification tool is necessary to reduce human errors in the reasoning process. In this regard, this paper is an attempt towards the development of a novel executable specification language for distributed real-time systems. First, we give a precise characterization of the syntax and semantics of DL. Subsequently, we discuss the problems of model checking, automatic verification of satisfiability of DL specifications, and testing conformance of event traces with DL specifications. Effective solutions to these problems are presented as extensions to the classical first-order tableau algorithm. The use of the proposed framework is illustrated by specifying a sample problem.
Resumo:
The conventional Cornell's source-based approach of probabilistic seismic-hazard assessment (PSHA) has been employed all around the world, whilst many studies often rely on the use of computer packages such as FRISK (McGuire FRISK-a computer program for seismic risk analysis. Open-File Report 78-1007, United States Geological Survey, Department of Interior, Washington 1978) and SEISRISK III (Bender and Perkins SEISRISK III-a computer program for seismic hazard estimation, Bulletin 1772. United States Geological Survey, Department of Interior, Washington 1987). A ``black-box'' syndrome may be resulted if the user of the software does not have another simple and robust PSHA method that can be used to make comparisons. An alternative method for PSHA, namely direct amplitude-based (DAB) approach, has been developed as a heuristic and efficient method enabling users to undertake their own sanity checks on outputs from computer packages. This paper experiments the application of the DAB approach for three cities in China, Iran, and India, respectively, and compares with documented results computed by the source-based approach. Several insights regarding the procedure of conducting PSHA have also been obtained, which could be useful for future seismic-hazard studies.
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.
Resumo:
The paper propose a unified error detection technique, based on stability checking, for on-line detection of delay, crosstalk and transient faults in combinational circuits and SEUs in sequential elements. The proposed method, called modified stability checking (MSC), overcomes the limitations of the earlier stability checking methods. The paper also proposed a novel checker circuit to realize this scheme. The checker is self-checking for a wide set of realistic internal faults including transient faults. Extensive circuit simulations have been done to characterize the checker circuit. A prototype checker circuit for a 1mm2 standard cell array has been implemented in a 0.13mum process.
Resumo:
Bisimulation-based information flow properties were introduced by Focardi and Gorrieri [1] as a way of specifying security properties for transition system models. These properties were shown to be decidable for finite-state systems. In this paper, we study the problem of verifying these properties for some well-known classes of infinite state systems. We show that all the properties are undecidable for each of these classes of systems.