304 resultados para Precipitation (chemical)

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homogeneous precipitation from solution by hydrolysis of urea at elevated temperatures (T=120 degrees C) yields novel ammonia-intercalated alpha-type hydroxide phases of the formula M(OH)(x)(NH3)(0.4)(H2O)(y)(NO3)(2-x) where x=2, y=0.68 for M=Ni and x=1.85, y=0 for M=Co. These triple-layered hexagonal phases (a=3.08+/-0.01 Angstrom, c=21.7+/-0.05 Angstrom) are more crystalline than similar phases obtained by chemical precipitation or electrosynthesis. This method can be adapted as a convenient chemical route to the bulk synthesis of alpha-hydroxides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of dextrin and guar gum with pyrite has been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of the polysaccharides onto pyrite reveal a region of higher adsorption density in the pH range 7.5-11, with a maximum around pH 10 for both polymers. The isotherms exhibit Langmuirian behavior. The adsorption density of guar gum onto pyrite is higher than that of dextrin. Electrokinetic measurements indicate a decrease in the electrophoretic mobility values in proportion to the concentration of the polymer added. Co-precipitation tests confirm polymer-ferric species interaction in the bulk solution, especially in the pH range 5.5-8.5. The pH range for higher adsorption, significant co-precipitation, and appreciable depression of pyrite encompass each other. XPS and FTIR spectroscopic studies provide evidence in support of chemical interaction between hydroxylated pyrite and the hydroxyl groups of the polymeric depressants. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic molecules such as glucose or lactose mediate the synthesis and stabilize alpha-nickel hydroxide in a simple precipitation reaction, while, in the absence of these additives, beta-nickel hydroxide is formed. The additives are not incorporated in the product phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of precipitation reactions is extremely important in the technology of production of fine particles from the liquid phase. The control of composition and particle size in precipitation processes requires careful analysis of the several reactions that comprise the precipitation system. Since precipitation systems involve several, rapid ionic dissociation reactions among other slower ones, the faster reactions may be assumed to be nearly at equilibrium. However, the elimination of species, and the consequent reduction of the system of equations, is an aspect of analysis fraught with the possibility of subtle errors related to the violation of conservation principles. This paper shows how such errors may be avoided systematically by relying on the methods of linear algebra. Applications are demonstrated by analyzing the reactions leading to the precipitation of calcium carbonate in a stirred tank reactor as well as in a single emulsion drop. Sample calculations show that supersaturation dynamics can assume forms that can lead to subsequent dissolution of particles that have once been precipitated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.