12 resultados para Poultry industry - By products
em Indian Institute of Science - Bangalore - Índia
Resumo:
In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of C-14 ages of CaCO3 nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the filtered/unfiltered exhaust of a stationary diesel engine was carried out using non-thermal plasma (pulsed electrical discharge plasma) process and cascaded processes namely plasma- adsorbent and plasma-catalyst processes. The superior performance of discharge plasma with regard to NOx removal, energy consumption and formation of by-products in unfiltered exhaust environment is identified. In the cascaded plasma-adsorbent process, the plasma was cascaded with adsorbents (MS13X/Activated alumina/Activated charcoal). The cascaded process treating unfiltered exhaust exhibits a very high NOx removal compared to the individual processes and further, the cascaded process gives almost the same NOx removal efficiency irrespective of type of adsorbent used. In the cascaded plasma- catalyst process, the plasma was cascaded with activated alumina catalyst at high temperature. The synergy effect and improved performance of the cascaded process are explained. Further, experiments were conducted at room temperature as well as at higher temperatures.
Resumo:
Isoquinoline was prepared through the Beckmann rearrangement of cinnamaldoxime over different H-zeolites, K-10 montmorillonite clay, amorphous SiO2–Al2O3 and γ-alumina under well-optimized conditions of temperature, weight hourly space velocity and catalyst loading. Cinnamaldoxime under ambient reaction conditions over the catalysts underwent migration of the anti-styryl moiety to electron deficient nitrogen (Beckmann rearrangement) followed by an intramolecular cyclization to yield isoquinoline. Cinnamo-nitrile (dehydration product) and cinnamaldehyde were formed as by-products. Isoquinoline formation was high on zeolite catalysts (ca. >86.5%) and mordenite (ca. 92.3%) was the most efficient in the series. Catalysts were susceptible for deactivation and the decrease in the percentage conversion of oxime with time is associated with a corresponding increase in the acid hydrolysis producing salicylaldehyde at later stages of the reaction. However, these catalysts retain activity considerably and can be recycled without loss of activity and change of product distribution.
Resumo:
The condensation product of 2-carbethoxycyclopentanone and ethyl cyanoacetate is ethyl 2-carbethoxycyclopentylidene cyanoacetate (IIa) and not the one described by Kon and Nanji. Similarly, 2-carbomethoxycyclopentanone and methyl cyanoacetate yield methyl 2-carbomethoxycyclopentylidene cyanoacetate (IIb). The by-products obtained in the first reaction are cyclopentylidene cyanoacetate (IV) and the enamine of 2-carbethoxycyclopentanone (VIa).
Resumo:
The titled reaction was effected with iso-amyl nitrite or sodium nitrite, both in cone. H2SO4 at 0-25 degrees C in excellent yields (55-98%). Apart from the mild temperatures employed, organic solvents and reagents can be avoided, and the by-products are CO2 and N-2, so the conditions are environment-friendly. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.
Resumo:
This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasma. In raw exhaust environment, the discharge plasma exhibits a superior performance with regard to NOx removal, energy consumption and formation of by-products. In this study, experiments were conducted at conditions of different temperatures and loads.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.
Resumo:
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.
Resumo:
In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.
Resumo:
Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.
Resumo:
Early diagnosis of disease is important, because therapeutic intervention is most successful before it spread to the subject. The best health screenings method could be the blood test because the blood contains thousands of bio-molecules coming as by-products from the diseased part of the organism and would be non-invasive approach. The major limitation of this approach is the very low concentrations of the analytes need to be detected. Raman spectroscopy has been proven as one of the cutting edge technique applied in the field of histology, cytology and clinical chemistry. The primary obstacle of Raman spectroscopy is the low signal intensities. One of the promising approaches to overcome that is surface enhanced Raman spectroscopy (SERS) which has opened novel opportunities for chemical and biomedical analytics. Albumin is one of the most abundant proteins in blood, produced by liver. The state of albumin in serum determines the health of the liver and kidney. Serum albumin helps to transport many small molecules such as fatty acids, bilirubin, calcium, drugs through the blood. In this study, SERS is being used for the quantification and to understand of binding mechanism serum albumin.