77 resultados para Postural instability
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents a methodology for dynamic analysis of short term small signal voltage instability in a multi-machine power system. The formulation of the problem is done by decoupling the angle instability from the voltage instability. The method is based on the incremental reactive current flow network (IRCFN), where the incremental reactive current injection at each bus is related to the incremental voltage magnitude at all the buses. Small signal stability using the eigenvalue analysis is illustrated utilizing a single-machine load bus (SMLB) and three-machine system examples. The role of a static var compensator (SVC) at the load bus is also examined.
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stratified Boussinesq fluid in the presence of a rigid boundary is studied, A jump in the magnetic field is introduced at a level different from the velocity discontinuity. New unstable modes in addition to the Kelvin-Helmhottz mode are found. The wavelengths of these unstable modes are close to the wavelengths of internal Alfv6n gravity waves in the atmospher.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
This is an experimental and theoretical Study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was foundthat the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr-Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer Outside the bubble, with its associated Kelvin-Helmholtz mechanism. We contendthat only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin-Helmholtz instability paradigm, with its associated scaling principles, Could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.
Resumo:
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.
Resumo:
It is shown that Southwood's instability criterion for the onset of the Kelvin-Helmholtz instability at the magnetopause can be directly obtained from the marginal instability condition for the pure Alfven surface waves propagating along the interface between two incompressible media in the limit when the wave propagation direction is nearly perpendicular to the direction of the largest magnetic field. The phase velocity of the surface waves first excited at the onset of the instability depends on the angle between the interplanetary magnetic field and flow velocity in the solar wind in front of the bow shock.
Resumo:
The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
It is proposed that the wave mediated indirect wave-particle interaction may be responsible for nonlinear saturation of current driven low frequency ion-acoustic turbulence. This process decreases the growth rate and increases the damping rate of the wave. Comparison has been made with some experiments.
Resumo:
The amplification mechanism for the side bands which accompany a large amplitude electron wave on a plasma column are shown to arise due to two mode interaction between negative and positive energy waves.
Resumo:
The nonlinear theory of the instability caused by an electron beam-plasma interaction is studied. A nonlinear analysis has been carried out using many-body methods. A general formula for a neutral collisionless plasma, without external fields, is derived. This could be used for calculating the saturation levels of other instabilities. The effect of orbit perturbation theory on the beam-plasma instability is briefly reviewed.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.