25 resultados para Portland cement
em Indian Institute of Science - Bangalore - Índia
Resumo:
We report the phase transformations in Portland cement before and after hydration. The hydration mechanism was studied in detail by using a full Rietveld refinement of the X-ray diffraction (XRD) patterns, Fourier Transformed Infra-Red (FTIR) spectroscopy, Thermogravimetric Analysis (TGA) and Mossbauer spectroscopy at room temperature. From the Rietveld refinement of XRD data, alite, belite, celite, brown-millerite and low quartz phases were detected and quantified as major phases in dry cement powder. After hydration, calcium carbonate, portlandite and ettringite phases were found to form. A large reduction in the amounts of alite and belite phases were observed suggesting the formation of amorphous C-S-H phase and emphasizing the role of alite phase in flash setting of cement, as justified by the XRD and FTIR spectroscopy. Mossbauer spectra of all the unset samples showed quadrupole split doublets corresponding to the brownmillerite phase which remains unchanged even after about one week of hydration, suggesting that brownmillerite did not transform to other phases during initial stage of hydration process. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Geopolymers are an alternative binder to portland cement in the manufacture of mortars and concrete, as its three-dimensional aluminosilicate network imparts excellent mechanical properties. Use of geopolymers in place of ordinary portland cement is favored owing to the possible energy and carbon dioxide savings. River sand is another construction industry material that needs development of a sustainable alternate in India. Geopolymerization of fly ash amorphous silica mixtures is employed to produce fine aggregates as a possible replacement to river sand. Geopolymerization of fly ash amorphous silica mixtures in 10M NaOH solution at 100 degrees C for 7days produced fine aggregates termed fly ash geopolymer sand (FAPS)] that had comparable grain size distribution, specific gravity, and improved frictional resistance with river sand. The FAPS particles exhibited more alkaline pH (12.5) and higher total dissolved solids (TDS) concentration (TDS=747 mg/L) in comparison to the river sand specimen (pH=7.9 and TDS=32.5 mg/L). However, when used as fine aggregate in mortar, FAPS-mortar specimens develop similar pH, lower TDS, similar compressive strength, and modulus in relation to river sand-mortar specimens. The experimental results suggest that FAPS particles have the potential to replace river sand in the manufacture of mortar and concrete.
Resumo:
Stabilised soil products such as stabilised soil blocks, rammed earth and stabilised adobe are being used for building construction since the last 6-7 decades. Major advantages of stabilised soil products include low embodied carbon, use of local materials, decentralized production, and easy to adjust the strength, texture, size and shape. Portland cement and lime represent the most commonly used stabilisers for stabilised soil products. The mechanism of strength development in cement and lime stabilised soils is distinctly different. The paper presents results of scientific investigations pertaining to the status of clay minerals in the 28 day cured cement and lime stabilised soil compacts. XRD, SEM imaging, grain size distribution and Atterberg's limits of the ground stabilised soil products and the natural soil were determined. Results reveal that clay minerals can be retrieved from cement stabilised soil products, whereas in lime stabilised soil products clay minerals get consumed in the lime-clay reactions and negligible percentage of clay minerals are left in the stabilised soil compacts. The results of the present investigation clearly demonstrate that cement stabilisation is superior to lime stabilisation in retrieving the clay minerals from the stabilised soil compacts. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.
Resumo:
Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m(3) and 0.36 MJ/m(3) for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m(3) for cement content in the rage of 6-8%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.
Resumo:
Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress-strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.
Resumo:
The accumulation of fly ash throughout the world is several million tons per day. The main problem with the usage of fly ash is the slow rate of strength gain, primarily due to slow pozzolanic reactions. Existing methods of proportioning fly ash concrete are lacking. These methods are involved and do not directly take into account the properties of the constituent materials. The Generalized Approach for Mix Proportioning developed at the Indian Institute of Science, Bangalore, is the basis for the development of the proposed method, which takes into account the characteristics of cement, fly ash, and aggregates. Based on the basic trial mix data obtained by using the American Concrete Institute (ACI 211.1-81) method, the proportions of fly-ash concrete mixes were arrived at using the Generalized Approach for Mix Proportioning. The method proposed was applied to and found applicable for fly-ash concretes using fly ashes from two different sources.
Resumo:
A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.
Resumo:
The use of silica from rice-husk for the production of various materials, including rice-husk ash-lime binder, has gained significance. In this context, the decomposition of husk, the properties of the silica ash, including its crystallization and the ash-lime reaction, are reviewed. The mechanism of ash-lime reaction is controlled mostly by the development of osmotic pressure. For lime-deficient ash-lime mixtures the reaction is complete in the initial few days and therefore no strength development is observed for such mortars in the later ages. The use of optimum ash/lime ratio is recommended for obtaining consistently good performance for the mortar. A method for the determination of this ratio is also discussed.
Resumo:
Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.