17 resultados para Populations of models, Latin Hypercube Sampling
em Indian Institute of Science - Bangalore - Índia
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
A robust aeroelastic optimization is performed to minimize helicopter vibration with uncertainties in the design variables. Polynomial response surfaces and space-¯lling experimental designs are used to generate the surrogate model of aeroelastic analysis code. Aeroelastic simulations are performed at the sample inputs generated by Latin hypercube sampling. The response values which does not satisfy the frequency constraints are eliminated from the data for model ¯tting. This step increased the accuracy of response surface models in the feasible design space. It is found that the response surface models are able to capture the robust optimal regions of design space. The optimal designs show a reduction of 10 percent in the objective function comprising six vibratory hub loads and 1.5 to 80 percent reduction for the individual vibratory forces and moments. This study demonstrates that the second-order response surface models with space ¯lling-designs can be a favorable choice for computationally intensive robust aeroelastic optimization.
Resumo:
Quantitative use of satellite-derived rainfall products for various scientific applications often requires them to be accompanied with an error estimate. Rainfall estimates inferred from low earth orbiting satellites like the Tropical Rainfall Measuring Mission (TRMM) will be subjected to sampling errors of nonnegligible proportions owing to the narrow swath of satellite sensors coupled with a lack of continuous coverage due to infrequent satellite visits. The authors investigate sampling uncertainty of seasonal rainfall estimates from the active sensor of TRMM, namely, Precipitation Radar (PR), based on 11 years of PR 2A25 data product over the Indian subcontinent. In this paper, a statistical bootstrap technique is investigated to estimate the relative sampling errors using the PR data themselves. Results verify power law scaling characteristics of relative sampling errors with respect to space-time scale of measurement. Sampling uncertainty estimates for mean seasonal rainfall were found to exhibit seasonal variations. To give a practical example of the implications of the bootstrap technique, PR relative sampling errors over a subtropical river basin of Mahanadi, India, are examined. Results reveal that the bootstrap technique incurs relative sampling errors < 33% (for the 2 degrees grid), < 36% (for the 1 degrees grid), < 45% (for the 0.5 degrees grid), and < 57% (for the 0.25 degrees grid). With respect to rainfall type, overall sampling uncertainty was found to be dominated by sampling uncertainty due to stratiform rainfall over the basin. The study compares resulting error estimates to those obtained from latin hypercube sampling. Based on this study, the authors conclude that the bootstrap approach can be successfully used for ascertaining relative sampling errors offered by TRMM-like satellites over gauged or ungauged basins lacking in situ validation data. This technique has wider implications for decision making before incorporating microwave orbital data products in basin-scale hydrologic modeling.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
Nonlinear vibration analysis is performed using a C-0 assumed strain interpolated finite element plate model based on Reddy's third order theory. An earlier model is modified to include the effect of transverse shear variation along the plate thickness and Von-Karman nonlinear strain terms. Monte Carlo Simulation with Latin Hypercube Sampling technique is used to obtain the variance of linear and nonlinear natural frequencies of the plate due to randomness in its material properties. Numerical results are obtained for composite plates with different aspect ratio, stacking sequence and oscillation amplitude ratio. The numerical results are validated with the available literature. It is found that the nonlinear frequencies show increasing non-Gaussian probability density function with increasing amplitude of vibration and show dual peaks at high amplitude ratios. This chaotic nature of the dispersion of nonlinear eigenvalues is also r
Resumo:
Polynomial chaos expansion (PCE) with Latin hypercube sampling (LHS) is employed for calculating the vibrational frequencies of an inviscid incompressible fluid partially filled in a rectangular tank with and without a baffle. Vibration frequencies of the coupled system are described through their projections on the PCE which uses orthogonal basis functions. PCE coefficients are evaluated using LHS. Convergence on the coefficient of variation is used to find the orthogonal polynomial basis function order which is employed in PCE. It is observed that the dispersion in the eigenvalues is more in the case of a rectangular tank with a baffle. The accuracy of the PCE method is verified with standard MCS results and is found to be more efficient.
Resumo:
Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
Dendrocalamus strictus and Bambusa arundinacea are monocarpic, gregariously flowering species of bamboo, common in the deciduous forests of the State of Karnataka in India. Their populations have significantly declined, especially since the last flowering. This decline parelleis increasing incidence of grazing, fire and extraction in recent decades. Results of an experiment in which the intensities of grazing and fire were varied, indicate that while grazing significantly depresses the survival of seedlings and the recruitment of new eulms of bamboo clumps, fire appeared to enhance seedling survival, presumably by reducing competition of lass fire-resistant species. New shoots of bamboo are destroyed by insects and a variety of herbivorous mammals. In areas of intense herbivore pressure, a bamboo clump initiates the production of a much larger number of new culrm, but results in many fewer and shorter intact culms. Extraction renders the new shoots more susceptible to herbivore pressure by removal of the protective covering of branches at the base of a bamboo clump. Hence, regular and extensive extraction by the paper mills in conjuction with intense grazing pressure strongly depresses the addition of new culms to bamboo clumps. Regulation of grazing in the forest by domestic livestock along with maintenance of the cover at the base of the clumps by extracting the culms at a higher level should reduce the rate of decline of the bamboo stocks.
Resumo:
Consider an organism in which the genetic fitness of an individual depends to a large extent on its social interactions. Assuming the genotypes to differ only in the choice of strategies they adopt in social interactions, and equating the variation in genetic fitness to the mean payoff to an individual averaged over all possible encounters, we develop a dynamical model for the evolution of genotypic frequencies in such a population. Such a system is characterised by frequency dependent selection, and depending on the initial composition, the population evolves towards one of several possible compositions. We term as evolutionarily stable compositions (ESC) any such composition towards which a population can evolve and which is stable against small fluctuations in the frequencies of existing genotypes as well as to invasions by any other postulated genotype. We state the necessary and sufficient conditions for the identification of all possible ESC's for any number of interacting genotypes. Our results conform to those derived earlier in connection with the concept of evolutionarily stable strategies only in the case of two interacting genotypes; when more than two genotypes interact the conditions under which various ESC's exist become far richer. We consider interactions with mixed strategists and show that in a conflict with pure strategists the optimal mixed strategist will be the only one to ultimately survive. We illustrate our approach by considering the specific case of a primitively social wasp.
Resumo:
A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.
Resumo:
A conceptually unifying and flexible approach to the ABC and FGH segments of the nortriterpenoid rubrifloradilactone C, each embodying a furo[3,2-b]furanone moiety, from the appropriate Morita-Baylis-Hillman adducts is delineated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The taxonomy of the Hanuman langur (Semnopithecus spp.), a widely distributed Asian colobine monkey, has been in a flux for a long time due to much disagreement between various classification schemes. However, results from a recent field-based morphological study were consistent with Hill's (Ceylon J Sci 21:277-305, 1939) species level classification scheme. Here we tested the validity of S. hypoleucos and S. priam, the two South Indian species recognized by Hill. To this end, one mitochondrial and four nuclear markers were sequenced from over 72 non-invasive samples of Hanuman langurs and S. johnii collected from across India. The molecular data were subjected to various tree building methods. The nuclear data was also used in a Bayesian structure analysis and to determine the genealogical sorting index of each hypothesized species. Results from nuclear data suggest that the South Indian population of Hanuman langur consists of two units that correspond to the species recognized by Hill. However in the mitochondrial tree S. johnii and S. priam were polyphyletic probably due to retention of ancestral polymorphism and/or low levels of hybridization. Implications of these results on conservation of Hanuman langurs are also discussed.
Resumo:
We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.