17 resultados para Popular Music
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper we consider the problem of computing an “optimal” popular matching. We assume that our input instance View the MathML source admits a popular matching and here we are asked to return not any popular matching but an optimal popular matching, where the definition of optimality is given as a part of the problem statement; for instance, optimality could be fairness in which case we are required to return a fair popular matching. We show an O(n2+m) algorithm for this problem, assuming that the preference lists are strict, where m is the number of edges in G and n is the number of applicants.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences: that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be rnore popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M,T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based oil the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distributions over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P,Q) >= phi(Q,P) for all mixed matchings Q. We show that popular mixed matchings always exist. and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem.
Resumo:
The problem of automatic melody line identification in a MIDI file plays an important role towards taking QBH systems to the next level. We present here, a novel algorithm to identify the melody line in a polyphonic MIDI file. A note pruning and track/channel ranking method is used to identify the melody line. We use results from musicology to derive certain simple heuristics for the note pruning stage. This helps in the robustness of the algorithm, by way of discarding "spurious" notes. A ranking based on the melodic information in each track/channel enables us to choose the melody line accurately. Our algorithm makes no assumption about MIDI performer specific parameters, is simple and achieves an accuracy of 97% in identifying the melody line correctly. This algorithm is currently being used by us in a QBH system built in our lab.
Resumo:
We propose a simple speech music discriminator that uses features based on HILN(Harmonics, Individual Lines and Noise) model. We have been able to test the strength of the feature set on a standard database of 66 files and get an accuracy of around 97%. We also have tested on sung queries and polyphonic music and have got very good results. The current algorithm is being used to discriminate between sung queries and played (using an instrument like flute) queries for a Query by Humming(QBH) system currently under development in the lab.
Resumo:
We consider the problem of matching people to jobs, where each person ranks a subset of jobs in an order of preference, possibly involving ties. There are several notions of optimality about how to best match each person to a job; in particular, popularity is a natural and appealing notion of optimality. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not adroit popular matchings. This motivates the following extension of the popular rnatchings problem:Given a graph G; = (A boolean OR J, E) where A is the set of people and J is the set of jobs, and a list < c(1), c(vertical bar J vertical bar)) denoting upper bounds on the capacities of each job, does there exist (x(1), ... , x(vertical bar J vertical bar)) such that setting the capacity of i-th, job to x(i) where 1 <= x(i) <= c(i), for each i, enables the resulting graph to admit a popular matching. In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c is 1 or 2.
Resumo:
Objective : The main objective of this work was to study the antipyretic and antibacterial activity of C. erectus (Buch.-Ham.) Verdcourt leaf extract in an experimental albino rat model. Materials and Methods : The methanol extract of C. erectus leaf (MECEL) was evaluated for its antipyretic potential on normal body temperature and Brewers yeast-induced pyrexia in albino rats model. While the antibacterial activity of MECEL against five Gram (-) and three Gram () bacterial strains and antimycotic activity was investigated against four fungi using agar disk diffusion and microdilution methods. Result : Yeast suspension (10 mL/kg b.w.) elevated rectal temperature after 19 h of subcutaneous injection. Oral administration of MECEL at 100 and 200 mg/kg b.w. showed significant reduction of normal rectal body temperature and yeast-provoked elevated temperature (38.8 0.2 and 37.6 0.4, respectively, at 2-3 h) in a dose-dependent manner, and the effect was comparable to that of the standard antipyretic drug-paracetamol (150 mg/kg b.w.). MECEL at 2 mg/disk showed broad spectrum of growth inhibition activity against both groups of bacteria. However, MECEL was not effective against the yeast strains tested in this study. Conclusion : This study revealed that the methanol extract of C. erectus exhibited significant antipyretic activity in the tested models and antibacterial activity as well, and may provide the scientific rationale for its popular use as antipyretic agent in Khamptiss folk medicines.
Resumo:
We consider the problem of matching people to items, where each person ranks a subset of items in an order of preference, possibly involving ties. There are several notions of optimality about how to best match a person to an item; in particular, popularity is a natural and appealing notion of optimality. A matching M* is popular if there is no matching M such that the number of people who prefer M to M* exceeds the number who prefer M* to M. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not admit popular matchings. This motivates the following extension of the popular matchings problem: Given a graph G = (A U 3, E) where A is the set of people and 2 is the set of items, and a list < c(1),...., c(vertical bar B vertical bar)> denoting upper bounds on the number of copies of each item, does there exist < x(1),...., x(vertical bar B vertical bar)> such that for each i, having x(i) copies of the i-th item, where 1 <= xi <= c(i), enables the resulting graph to admit a popular matching? In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c(i) is 1 or 2. We show a polynomial time algorithm for a variant of the above problem where the total increase in copies is bounded by an integer k. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if phi(M, T) >= phi(T, M) for all matchings T, where phi(X, Y) is the number of applicants that prefer X to Y. Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distribution over matchings in the input graph. The function phi that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if phi(P, Q) >= phi(Q, P) for all mixed matchings Q. We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We analyze the AlApana of a Carnatic music piece without the prior knowledge of the singer or the rAga. AlApana is ameans to communicate to the audience, the flavor or the bhAva of the rAga through the permitted notes and its phrases. The input to our analysis is a recording of the vocal AlApana along with the accompanying instrument. The AdhAra shadja(base note) of the singer for that AlApana is estimated through a stochastic model of note frequencies. Based on the shadja, we identify the notes (swaras) used in the AlApana using a semi-continuous GMM. Using the probabilities of each note interval, we recognize swaras of the AlApana. For sampurNa rAgas, we can identify the possible rAga, based on the swaras. We have been able to achieve correct shadja identification, which is crucial to all further steps, in 88.8% of 55 AlApanas. Among them (48 AlApanas of 7 rAgas), we get 91.5% correct swara identification and 62.13% correct R (rAga) accuracy.
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.
Resumo:
Compressive Sensing (CS) is a new sensing paradigm which permits sampling of a signal at its intrinsic information rate which could be much lower than Nyquist rate, while guaranteeing good quality reconstruction for signals sparse in a linear transform domain. We explore the application of CS formulation to music signals. Since music signals comprise of both tonal and transient nature, we examine several transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT), Fourier basis and also non-orthogonal warped transforms to explore the effectiveness of CS theory and the reconstruction algorithms. We show that for a given sparsity level, DCT, overcomplete, and warped Fourier dictionaries result in better reconstruction, and warped Fourier dictionary gives perceptually better reconstruction. “MUSHRA” test results show that a moderate quality reconstruction is possible with about half the Nyquist sampling.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
We address the problem of multi-instrument recognition in polyphonic music signals. Individual instruments are modeled within a stochastic framework using Student's-t Mixture Models (tMMs). We impose a mixture of these instrument models on the polyphonic signal model. No a priori knowledge is assumed about the number of instruments in the polyphony. The mixture weights are estimated in a latent variable framework from the polyphonic data using an Expectation Maximization (EM) algorithm, derived for the proposed approach. The weights are shown to indicate instrument activity. The output of the algorithm is an Instrument Activity Graph (IAG), using which, it is possible to find out the instruments that are active at a given time. An average F-ratio of 0 : 7 5 is obtained for polyphonies containing 2-5 instruments, on a experimental test set of 8 instruments: clarinet, flute, guitar, harp, mandolin, piano, trombone and violin.