2 resultados para Polypharmacology
em Indian Institute of Science - Bangalore - Índia
Resumo:
Introduction: Advances in genomics technologies are providing a very large amount of data on genome-wide gene expression profiles, protein molecules and their interactions with other macromolecules and metabolites. Molecular interaction networks provide a useful way to capture this complex data and comprehend it. Networks are beginning to be used in drug discovery, in many steps of the modern discovery pipeline, with large-scale molecular networks being particularly useful for the understanding of the molecular basis of the disease. Areas covered: The authors discuss network approaches used for drug target discovery and lead identification in the drug discovery pipeline. By reconstructing networks of targets, drugs and drug candidates as well as gene expression profiles under normal and disease conditions, the paper illustrates how it is possible to find relationships between different diseases, find biomarkers, explore drug repurposing and study emergence of drug resistance. Furthermore, the authors also look at networks which address particular important aspects such as off-target effects, combination-targets, mechanism of drug action and drug safety. Expert opinion: The network approach represents another paradigm shift in drug discovery science. A network approach provides a fresh perspective of understanding important proteins in the context of their cellular environments, providing a rational basis for deriving useful strategies in drug design. Besides drug target identification and inferring mechanism of action, networks enable us to address new ideas that could prove to be extremely useful for new drug discovery, such as drug repositioning, drug synergy, polypharmacology and personalized medicine.
Resumo:
Polypharmacology is beginning to emerge as an important concept in the field of drug discovery. However, there are no established approaches to either select appropriate target sets or design polypharmacological drugs. Here, we propose a structural-proteomics approach that utilizes the structural information of the binding sites at a genome-scale obtained through in-house algorithms to characterize the pocketome, yielding a list of ligands that can participate in various biochemical events in the mycobacterial cell. The pocket-type space is seen to be much larger than the sequence or fold-space, suggesting that variations at the site-level contribute significantly to functional repertoire of the organism. All-pair comparisons of binding sites within Mycobacterium tuberculosis (Mtb), pocket-similarity network construction and clustering result in identification of binding-site sets, each containing a group of similar binding sites, theoretically having a potential to interact with a common set of compounds. A polypharmacology index is formulated to rank targets by incorporating a measure of druggability and similarity to other pockets within the proteome. This study presents a rational approach to identify targets with polypharmacological potential along with possible drugs for repurposing, while simultaneously, obtaining clues on lead compounds for use in new drug-discovery pipelines.