180 resultados para Polynomial penalty functions

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach that can easily incorporate any generic penalty function into the diffuse optical tomographic image reconstruction is introduced to show the utility of nonquadratic penalty functions. The penalty functions that were used include quadratic (l(2)), absolute (l(1)), Cauchy, and Geman-McClure. The regularization parameter in each of these cases was obtained automatically by using the generalized cross-validation method. The reconstruction results were systematically compared with each other via utilization of quantitative metrics, such as relative error and Pearson correlation. The reconstruction results indicate that, while the quadratic penalty may be able to provide better separation between two closely spaced targets, its contrast recovery capability is limited, and the sparseness promoting penalties, such as l(1), Cauchy, and Geman-McClure have better utility in reconstructing high-contrast and complex-shaped targets, with the Geman-McClure penalty being the most optimal one. (C) 2013 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider polynomial representability of functions defined over , where p is a prime and n is a positive integer. Our aim is to provide an algorithmic characterization that (i) answers the decision problem: to determine whether a given function over is polynomially representable or not, and (ii) finds the polynomial if it is polynomially representable. The previous characterizations given by Kempner (Trans. Am. Math. Soc. 22(2):240-266, 1921) and Carlitz (Acta Arith. 9(1), 67-78, 1964) are existential in nature and only lead to an exhaustive search method, i.e. algorithm with complexity exponential in size of the input. Our characterization leads to an algorithm whose running time is linear in size of input. We also extend our result to the multivariate case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given a function from Z(n) to itself one can determine its polynomial representability by using Kempner function. In this paper we present an alternative characterization of polynomial functions over Z(n) by constructing a generating set for the Z(n)-module of polynomial functions. This characterization results in an algorithm that is faster on average in deciding polynomial representability. We also extend the characterization to functions in several variables. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method of generating polynomials using microprocessors is proposed. The polynomial is generated as a 16-bit digital word. The algorithm for generating a variety of basic 'building block' functions and its implementation is discussed. A technique for generating a generalized polynomial based on the proposed algorithm is indicated. The performance of the proposed generator is evaluated using a commercially available microprocessor kit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method of generating polynomials using microprocessors is proposed. The polynomial is generated as a 16-bit digital word. The algorithm for generating a variety of basic 'building block' functions and its implementation is discussed. A technique for generating a generalized polynomial based on the proposed algorithm is indicated. The performance of the proposed generator is evaluated using a commercially available microprocessor kit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polynomial chaos expansion (PCE) with Latin hypercube sampling (LHS) is employed for calculating the vibrational frequencies of an inviscid incompressible fluid partially filled in a rectangular tank with and without a baffle. Vibration frequencies of the coupled system are described through their projections on the PCE which uses orthogonal basis functions. PCE coefficients are evaluated using LHS. Convergence on the coefficient of variation is used to find the orthogonal polynomial basis function order which is employed in PCE. It is observed that the dispersion in the eigenvalues is more in the case of a rectangular tank with a baffle. The accuracy of the PCE method is verified with standard MCS results and is found to be more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The curvature related locking phenomena in the out-of-plane deformation of Timoshenko and Euler-Bernoulli curved beam elements are demonstrated and a novel approach is proposed to circumvent them. Both flexure and Torsion locking phenomena are noticed in Timoshenko beam and torsion locking phenomenon alone in Euler-Bernoulli beam. Two locking-free curved beam finite element models are developed using coupled polynomial displacement field interpolations to eliminate these locking effects. The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the governing equations. The presented of penalty terms in the couple displacement fields incorporates the flexure-torsion coupling and flexure-shear coupling effects in an approximate manner and produce no spurious constraints in the extreme geometric limits of flexure, torsion and shear stiffness. the proposed couple polynomial finite element models, as special cases, reduce to the conventional Timoshenko beam element and Euler-Bernoulli beam element, respectively. These models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. The efficacy, accuracy and reliability of the proposed models to straight and curved beam applications are demonstrated through numerical examples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.