134 resultados para Polymer Chemistry
em Indian Institute of Science - Bangalore - Índia
Resumo:
A series of novel, microporous polymer networks (MPNs) have been generated in a simple, acid catalysed Friedel-Crafts-type self-condensation of A(2)B(2)- and A(2)B(4)-type fluorenone monomers. Two A2B4-type monomers with 2,7-bis(N, N-diphenylamino) A or 2,7-bis [4-(N, N-diphenylamino) phenyl] D substitution of the fluorenone cores lead to MPNs with high S(BET) surface areas of up to 1400 m(2) g(-1). Two MPNs made of binary monomer mixtures showed the highest Brunauer-Emmett-Teller (BET) surface areas S(BET) of our series (SBET of up to 1800 m(2) g(-1)) after washing the powdery samples with supercritical carbon dioxide. Total pore volumes of up to 1.6 cm(3) g(-1) have been detected. It is observed that the substitution pattern of the monomers is strongly influencing the resulting physicochemical properties of the microporous polymer networks (MPNs).
Resumo:
A thermally stable and flexible composite has been synthesized by following a consecutive `two-step', solvent free route. Silicone polymer containing internal hydrides was used as a polymer matrix and mesoporous silica functionalized with allytrimethoxysiloxane was used as a filler material. In the second step, the composite preparation was carried out using the hydrosilylation reaction mediated by `Karastedt' platinum catalyst. The results of the studies suggest that the composites are thermally stable, hydrophobic and flexible and can be potentially used for encapsulating flexible electronic devices.
Resumo:
A new D-A structured conjugated polymer (PBDO-T-TDP) based on electron-rich benzo 1,2-b:4,5-b'] difuran (BDO) containing conjugated alkylthiophene side chains with an electron-deficient diketopyrrolopyrrole (DPP) derivative is designed and synthesized. The polymer shows a narrow band gap with broad UV-Visible absorption spectra, which is in contrast to that of the P3HT:PCBM binary blend. Furthermore, its energy levels can meet the energetic requirement of the cascaded energy levels of P3HT and PCBM. Therefore, PBDO-T-TDP is used as a sensitizer in P3HT: PCBM based BHJ solar cells and its effect on their photovoltaic properties was investigated by blending them together at various weight ratios. It is observed that the resulting ternary blend system exhibited a significant improvement in the device performance (similar to 3.10%) as compared with their binary ones (similar to 2.15%). Such an enhancement in the ternary blend system is ascribed to their balanced hole and electron mobility along with uniform distribution of PBDO-T-TDP in the blend system, as revealed by organic field effect transistors and AFM studies.
Resumo:
This article deals with the kinetics and mechanism of acrylonitrile (AN) polymerization initiated by Cu(II)-4-anilino 3-pentene 2-one[Cu(II)ANIPO], Cu(II)-4-p-toluedeno 3-pentene 2-one [Cu(II)TPO], and Cu(II)-4-p-nitroanilino 3-pentene 2-one [Cu(II)NAPO] in bulk at 60°C. The polymerization is free radical in nature. The exponent of initiator(I) is 0.5. The initiation step is a complex formation between the chelate and monomer and subsequent decomposition of the intermediate complex giving rise to free radical and Cu(I). This is substantiated by ultraviolet (UV) and electron spin resonance (ESR) studies. The activation energies and kinetic and chain transfer constants have also been evaluated.
Resumo:
Evidence of the initiation process during uncatalyzed thermal polymerization of vinyl monomers is presented. DSC studies reveal a prominent endothermic effect just before the polymerization exotherm, which is substantiated by the identification of the free radicals produced in the initiation by a quick quenching technique and subsequent detection by ESR at low temperatures.
Resumo:
Initiation and propagation processes in thermally initiated solid-state polymerization of sodiumvacrylate have been studied. The kinetics of initiation, followed with the electron spin resonancev technique, leads to an activation energy E of 28.8 kcal/mol, which is attributed to the formation of dimeric radicals. The activation energy of 16 f 1 kcaVmol obtained for the solid-state polymerization of sodium acrylate by chemical analysis and differential scanning calorimetry has been attributed to the propagation process.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(I1) 4-anilino 3-pentene 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(I1) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCld), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 22 at two different temperatures and in different solvents. The square-root dependence of R, on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formatign was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
The behavior of cupric dipivaloylmethide in vinyl polymerization systems was investigated with a view to understanding the mechanism of polymerization initiation. Results of polymerization reactions together with spectral investigation data are presented. Polymerization in the presence of the chelate proceeds through a free-radical process. The corresponding kinetic and transfer constants and activation energy values suggest a normal propagation step. With the help of spectral data an attempt is made to suggest a plausible mechanism of initiation.
Resumo:
Polymerization of methyl methacrylate in the presence of a mixed ligand complex, [N,N-ethylenebis(salicylideneiminato)](acetylacetonato)cobalt(III) in benzene was studied. The rate of polymerization was proportional to the square root of the concentration of the chelate and the monomer exponent was 1.67 and 1.69 at 60 and 70°C, respectively. The activation energy and the kinetic and transfer constants were evaluated. A free-radical mechanism has been proposed.
Resumo:
The behavior of the chelate, ferric dipivaloylmethide, Fe(DPM)3, in vinyl polymerization systems was investigated. The polymerization was found to be of free-radical nature. The rate of polymerization was proportional to the square root of the concentration of the chelate. The monomer exponent was close to 1.5 for the Fe(DPM)3-initiated polymerization of styrene and methyl methacrylate. The kinetic and transfer constants and activation energies for these systems have been evaluated. Spectral studies revealed the possibility of a complex formation between the chelate and the monomer. A kinetic scheme for the Fe(DPM)3-initiated polymerization is derived based on this initial complex formation.
Resumo:
The nature of the interaction between the unsaturated monomer and the chelate, Fe(DPM)3, is studied in detail. The interaction is found to occur only in solution. The stoichiometry of interaction and the equilibrium constant are evaluated. With the help of spectral evidence, attempts are made to point out the specific sites of interaction.
Resumo:
1,3-Dipolar cycloaddition of an organic azide and an acetylenic unit,often referred to as the ``click reaction'', has become an important ligation tool both in the context of materials chemistry and biology. Thus, development of simple approaches to directly generate polymers that bear either an azide or an alkyne unit has gained considerable importance. We describe here a straightforward approach to directly prepare linear and hyperbranched polyesters that carry terminal propargyl groups. To achieve the former, we designed an AB-type monomer that carries a hydroxyl group and a propargyl ester, which upon self-condensation under standard transesterification conditions yielded a polyester that carries a single propargyl group at one of its chain-ends. Similarly, an AB(2) type monomer that carries one hydroxyl group and two propargyl ester groups, when polymerized under the same conditions yielded a hyperbranched polymer with numerous clickable'' propargyl groups at its molecular periphery. These propargyl groups can be readily clicked with different organic azides, such as benzyl azide, omega-azido heptaethyleneglycol monomethylether or 9-azidomethyl anthracene. When an anthracene chromophore is clicked, the molecular weight of the linear polyester could be readily estimated using both UV-visible and fluorescence spectroscopic measurements. Furthermore, the reactive propargyl end group could also provide an opportunity to prepare block copolymers in the case of linear polyesters and to generate nanodimensional scaffolds to anchor variety of functional units, in the case of the hyperbranched polymer. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3200-3208, 2010.
Resumo:
Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.