324 resultados para Play behavior

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results on a resin-rich machine insulation system subjected to varying stresses such as electrical (2.6 to 13.3 MV/m) and thermal (40 to 155° C) acting together. Accelerated electro-thermal aging experiments subsequently have been performed to understand the insulation degradation The interpretations are based on several measured properties like capacitance, loss tangent, ac resistance, leakage current, and partial discharge quantities. The results indicate that the changes in properties are not significant below a certain temperature for any applied stress, Beyond this temperature large variations are observed even for low electrical stresses. Electrothermal aging studies reveal that the acceleration of the insulation degradation and the ultimate time to failure depends on the relative values of temperature and voltage stresses. At lower temperatures, below critical, material characteristics of the system predominate whereas beyond this temperature, other phenomena come into play causing insulation deterioration. During aging under combined stresses, it appears that the prevailing temperature of the system has a significant role in the insulation degradation and ultimate failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in total hip and knee joint replacement. In order to enhance long-term durability/wear resistance properties, UHMWPE-based polymer-ceramic hybrid composites are being developed. Surface properties such as wettability and protein adsorption alter with reinforcement or with change in surface chemistry. From this perspective, the wettability and protein adsorption behavior of compression-molded UHMWPE-hydroxyapatite (HA)-aluminum oxide (Al2O3)-carbon nanotube (CNT) composites were analyzed in conjunction with surface roughness. The combined effect of Al2O3 and CNT shows enhancement of the contact angle by similar to 37A degrees compared with the surface of the UHMWPE matrix reinforced with HA. In reference to unreinforced UHMWPE, protein adsorption density also increased by similar to 230% for 2 wt.%HA-5 wt.%Al2O3-2 wt.%CNT addition to UHMWPE. An important conclusion is that the polar and dispersion components of the surface free energy play a significant role in wetting and protein adsorption than do the total free energy or chemistry of the surface. The results of this study have major implications for the biocompatibility of these newly developed biocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow characteristics of a near eutectic Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of the flow behavior on heat treatment is studied by testing the alloy in non-heat treated (NHT) and heat treated (HT) conditions. The heat treatment has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. It is observed that the strength of the alloy increases with increase in strain rate and it increases more rapidly above the strain rate of 10(-1) s(-1) in HT condition at all the temperatures, and at 100 degrees C and 200 degrees C in NHT condition. The thermally dependent process taking place in the HT matrix is responsible for the observed greater SRS in HT condition. The alloy in HT condition exhibits a larger work hardening rate than in NHT condition during initial stages of straining. However, the hardening rate decreases more sharply at higher strains in HT condition due to precipitate shearing and higher rate of Si particle fracture. Thermal hardening is observed at 200 degrees C in NHT condition due to precipitate formation, which results in increased SRS at higher temperatures. Thermal softening is observed in HT condition at 200 C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by a finite element method support the experimentally observed particle and matrix fracture behavior. A negative SRS and serrated flow are observed in the lower strain rate regime (3 x 10(-4)-10(-2) s(-1)) at RT and 100 degrees C, in both NHT and HT conditions. The observations show that both dynamic strain aging (DSA) and precipitate shearing play a role in serrated flow. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow characteristics of a near-eutectic heat-treated Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of flow behavior on modification is examined by testing the alloy in both the unmodified and modified conditions. Modification has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. The strength of the alloy is found to increase with increase in strain rate for both the conditions. The increase is more rapid above the strain rate of 10(-1) s(-1) for the unmodified alloy at all the temperatures. This rapid increase is observed at 1 s(-1) at RT and 100 degrees C, and at 10(-2) s(-1) at 200 degrees C for the modified alloy. The thermally dependent process of the Al matrix is rate controlling in the unmodified alloy. On the other hand, the thermally dependent process of both Al matrix and Si particles are rate controlling, which is responsible for the higher strain rate sensitivity (SRS) in the modified alloy. The unmodified alloy exhibits a larger work hardening rate than the modified alloy during the initial stages of straining due to fiber loading of unmodified Si particles. However, the hardening rate decreases sharply at higher strains for the unmodified alloy due to a higher rate of Si particle fracture. Thermal softening is observed for both alloys at 200 degrees C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by microstructure based finite element method support the experimentally observed particle and matrix fracture behavior. Negative SRS and serrated flow are observed at lower strain rate regime (3 x 10(-4) to 10(-2) s(-1)) at RT and 100 degrees C, in both alloys. The critical onset strain is found to be lower and the magnitude of serration is found to be higher for the modified alloy, which suggests that, in addition to dynamic strain aging, Si particle size and morphology also play a role in serrated flow. (C) 2015 Elsevier Inc All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an iterative sequence of Wittig olefination, reduction, oxidation, and condensation of an active methylene group to carbonyl, it was possible to prepare a series of organometallic push-pull molecules [(CO)(5)M=C(OCH3)(-CH=CH-)(n)(C5H4)Fe(C5H5), M = W, Cr, n = 1-4] in which ferrocene is the donor element and a Fisher carbene moeity is the acceptor group. The molecular first hyperpolarizability beta was determined by hyper-Rayleigh scattering experiments. The beta values ranged from 110 x 10(-30) to 2420 x 10(-30) esu in acetonitrile, and they are among the highest reported for organometallic molecules so far. Electrochemical measurements are consistent with the push-pull nature of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on melt rheological properties of blends of low density polyethylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported, The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20-30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10 g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends.