4 resultados para Pittsburgh, Fort Wayne, and Chicago Railway Company
em Indian Institute of Science - Bangalore - Índia
Resumo:
GPR is widely used for ballast fouling identification, however, there are no robust guidelines to find the degree and type of fouling quantitatively. In this study, GPR studies were carried out on model and actual railway tracks using three ground coupled antennas and considering three fouling materials. Three ground coupled antennas viz., 100 MHz, 500 MHz and 800 MHz antennas were used for the initial survey and it was found that the 800 MHz ground coupled antenna is an optimum one to get quality results. Three major fouling materials viz., screened/broken ballast, coal and iron ore were used to construct prototype model sections, which were 1/2 of the actual Indian broad-gauge railway track. A separate model section has been created for each degree and type of fouling and GPR surveys were carried out. GPR study shows that increasing the fouling content results in a decrease in the Electromagnetic Wave (EMW) velocity and an increase in the dielectric constant. EMW velocity of ballast fouled with screened ballast was found to be more than coal fouled ballast and iron ore fouled ballast at any degree of fouling and EMW velocity of iron ore fouled ballast was found to be less than coal and screen ballast fouled ballast. Dielectric constant of iron ore fouled ballast was found to be higher than coal and screen ballast fouled ballast for all degrees of fouling. Average slope of the trend line of screen ballast fouled section is low (25.6 degrees), coal fouled ballast is medium (27.8 degrees) and iron ore fouled ballast is high (47.6 degrees). (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Temperature data collected over several years from rocket grenade and other experiments at Point Barrow (Alaska), Fort Churchill (Canada) and Wallops Island (Virginia) have been analysed to determine the effect of geomagnetic activity on the neutral temperature in the mesosphere and to study the latitudinal variation of this effect. An analysis carried out has revealed almost certainly significant correlations between the temperature and the geomagnetic indicies Kp and Ap at Fort Churchill and marginally significant correlations at Barrow and Wallops. This has also been substantiated by a linear regression analysis. The results indicate two types of interdependence between mesospheric temperature and geomagnetic field variations. The first type is the direct heating effect, during a geomagnetic disturbance, which has been observed in the present analysis with a time lag of 3–15 hr at the high latitudes and 36 hr at the middle latitudes. The magnitude of this heating effect has been found to decrease at the lower altitudes. The second type of interrelation which has been observed is temperature perturbations preceding geomagnetic field variations, both presumably caused by a disturbance in atmospheric circulation at these levels.
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.