3 resultados para Pincer
em Indian Institute of Science - Bangalore - Índia
Resumo:
N,N',N `'-Tris(2-anisyl)guanidine, (ArNH)(2)C=NAr (Ar = 2-(MeO)C6H4), was cyclopallaclated with Pd(OC(O)R)(2) (R = Me, CF3) in toluene at 70 degrees C to afford palladacycles Pd{kappa(2)(C,N)-C6H3-(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-OC(O)R)](2)(R = Me (1a) and CF3 (1b)) in 87% and 95% yield, respectively. Palladacycle 1a was subjected to a metathetical reaction with LiBr in aqueous ethanol at 78 degrees C to afford palladacycle Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (2) in 90% yield. Palladacycle 2 was subjected to a bridge-splitting reaction with Lewis bases in CH2Cl2 to afford the monomeric palladacycles Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}Br(L)] (L = 2,6-Me2C5H3N (3a), 2,4-Me2C5H3N (3b), 3,5-Me2C5H3N (3c), XyNC (Xy = 2,6-Me2C6H3; 4a), (BuNC)-Bu-t (4b), and PPh3 (5)) in 87-95% yield. Palladacycle 2 upon reaction with 2 equiv of XyNC in CH2Cl2 afforded an unanticipated palladacycle, Pd{kappa(2)(C,N)-C(=NXy)(C6H3(OMe)-4)-2(N=C-(NH Ar)(2))-3} Br(CNXy)] (6) in 93% yield, and the driving force for the formation of 6 was ascribed to a ring contraction followed by amine-imine tautomerization. Palladacycles 1 a,b revealed a dimeric transoid in-in conformation with ``open book'' framework in the solid state. In solution, 1 a exhibited a fluxional behavior ascribed to the six-membered ``(C,N)Pd'' ring inversion and partly dissociates to the pincer type and kappa(2)-O,O'-OAc monomeric palladacycles by an anchimerically assisted acetate cleavage process as studied by variable-temperature H-1 NMR data. Palladacycles 3a,b revealed a unique trans configuration around the palladium with lutidine being placed trans to the Pd-C bond, whereas cis stereochemistry was observed between the Pd-C bond and the Lewis base in 4a (as determined by X-ray diffraction data) and 5 (as determined by P-31 and C-13 NMR data). The aforementioned stereochemical difference was explained by invoking relative hardness/softness of the donor atoms around the palladium center. In solution, palladacycles 3a-c exist as a mixture of two interconverting boat conformers via a planar intermediate without any bond breaking due to the six-membered ``(C,N)Pd'' ring inversion, whereas palladacycles 4a,b and 5 exist as a single isomer, as deduced from detailed H-1 NMR studies.
Resumo:
A new ruthenium pincer complex RuHCl(CO)(PNP)] (PNP = PhCH2N(CH2CH2PPh2)(2)) (1) was synthesized and characterized. The reactivity of complex 1 with electrophilic reagents XOTf (X = H, CH3, and Me3Si; OTf = CF3SO3) was studied by variable temperature NMR spectroscopy with an aim to observe and characterize sigma complexes of type Ru(eta(2)-HX)Cl(CO)(PNP)]OTf] (X = H (2), CH3 (3), Me3Si (4)). Reaction of complex 1 with HOTf resulted in the formation of the dihydrogen complex, Ru(eta(2)-H-2)Cl(CO)(PNP)OTf] (2). On the other hand, the reaction between complex 1 and MeOTf and Me3SiOTf resulted in the direct elimination of MeCl and Me3SiCl via a S(N)2 type of reaction without the intermediacy of the respective sigma complexes 3 and 4. This contrasting reactivity behaviour has been rationalized taking into consideration the approach of the relatively bulky electrophites CH3+ and Me3Si+ onto the hydride moiety of the ruthenium fragment, which is sterically hindered.
Resumo:
Depalladation of the monoalkyne-inserted cyclopalldated guanidines (kappa 2(C,N)Pd(2,6-Me2C5H3N)Br] (I and II) in PhCl under reflux conditions and that of the dialkyne-inserted cyclopalladated guanidine kappa(2)(C,N):eta(2)(C=C)PdBr] (III) in pyridine under reflux conditions afforded a guanidine-containing indole (1), imidaziondole (2), and benzazepine (3) in 80%, 67%, and 76%, yields, respectively. trans-L2PdBr2] species (L = 2,6-Me2C5H3N, C5H5N) were also isolated in the aforementioned reactions in 35%, 42%, and 40% yields. Further , the reaction of the cyclopalladated guanidine kappa(2)(C,N)Pd(mu-Br)](2) (IV) with AgBF4 in a CH2Cl2/MeCN mixture afforded the cationic pincer type cyclopalladated guanidine kappa(3)(C,N,O)Pd(MeCN)]BF4] (4) in 85% yield and this palladacycle upon crystallization in MeCN and the reaction of kappa(2)(C,N)Pd(mu-Br)](2) (V) with AgBf(4) in a CH2Cl2/MeCN mixture afforded the cationic palladacycles {kappa(2)(C,N)Pd(MeCN)(2)]BF4](5 and 6) in 89% and 91% yields, respectively. The separate reactions of 4 with 2 equiv of methyl phenylpropiolate (MPP) or diphenylacetylene (DPA) and the reaction of 5 with 2 equiv of MPP in PhCl at 110 degrees C afforded the guanidine-containing quinazolinium tetrafluoroborate 7 in 25-32% yields. The reaction of 6 with 2 equiv of DPA under otherwise identical conditions afforded the unsymmetrically substituted guanidinium tetrafluoroborate 8, containing a highly substituted naphthalene unit, in 82% yield. Compounds 1-8 were characterized by analytical and spectroscopic techniques, and all compounds except 4 were characterized by single-crystal X-ray diffraction. The Molecular structure of 2 and 3 are nove, as the framework in the former arises due to the formation of two C-N bonds upon depalladation while the butadienyl unit in the latter revealed cis,cis stereochemistry, a-feature unprecedented in alkyne insertion chemistry. Plausible pathways for the formation of heterocycles/carbocycles are proposed. the influence of substitutents on the aryl rings fo the cyclopalladated guanidine moiety and those on alkynes upon the nature of the products in addressed. Heterocycles 1 and 7 revealed the presence of two rotamers in about a 1.00:0.43 ratio in CDCl3 and in about a 1.00:0.14 ratio in CD3OD, respectively, as detected by H-1 NMR spectroscopy while in CD3CN and DMSO-d(6) (1) and CD3CN and CDCl3 (7), these heterocycles revealed the presence of a single rotamer. These spectral features are attributed to the restricted C-N single-bond rotation of the CN3 unit of the guanidine moiety, which possibly arises from steric constraint due to the formation of a N-H center dot center dot center dot Cl hydrogen bond with CDCl3 (1) and N-H center dot center dot center dot O and O-D center dot center dot center dot O hydrogen bonds with CD3OD (7).