136 resultados para Physical three-dimensional model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is designed to develop a new technique for site characterization in a three-dimensional domain. Site characterization is a fundamental task in geotechnical engineering practice, as well as a very challenging process, with the ultimate goal of estimating soil properties based on limited tests at any half-space subsurface point in a site.In this research, the sandy site at the Texas A&M University's National Geotechnical Experimentation Site is selected as an example to develop the new technique for site characterization, which is based on Artificial Neural Networks (ANN) technology. In this study, a sequential approach is used to demonstrate the applicability of ANN to site characterization. To verify its robustness, the proposed new technique is compared with other commonly used approaches for site characterization. In addition, an artificial site is created, wherein soil property values at any half-space point are assumed, and thus the predicted values can compare directly with their corresponding actual values, as a means of validation. Since the three-dimensional model has the capability of estimating the soil property at any location in a site, it could have many potential applications, especially in such case, wherein the soil properties within a zone are of interest rather than at a single point. Examples of soil properties of zonal interest include soil type classification and liquefaction potential evaluation. In this regard, the present study also addresses this type of applications based on a site located in Taiwan, which experienced liquefaction during the 1999 Chi-Chi, Taiwan, Earthquake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation 1 and principal axis at azimuth 1, and a pure rotator of power 2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional mathematical model has been developed to simulate the gas flow, composition, and temperature profiles inside a cupola. Comparison of the model with the reported experimental data shows the presence of a zone with low combustion rate at the tuyere level. For a 24 in (610 mm) cupola with four rows of tuyeres, the combustion zones from each tuyere overlap each other, forming an overall combustion zone of cylindrical shape of height similar to 0.2 m. Using the model, it is found that the spout temperature initially increases with increasing blast velocity and attains a maximum. Further increase in blast velocity does not change the spout temperature. This suggests that smaller size tuyeres and higher permeability of the bed can give superior cupola performance. (C) 1997 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional digital model of a representative human kidney is needed for a surgical simulator that is capable of simulating a laparoscopic surgery involving kidney. Buying a three dimensional computer model of a representative human kidney, or reconstructing a human kidney from an image sequence using commercial software, both involve (sometimes significant amount of) money. In this paper, author has shown that one can obtain a three dimensional surface model of human kidney by making use of images from the Visible Human Data Set and a few free software packages (ImageJ, ITK-SNAP, and MeshLab in particular). Images from the Visible Human Data Set, and the software packages used here, both do not cost anything. Hence, the practice of extracting the geometry of a representative human kidney for free, as illustrated in the present work, could be a free alternative to the use of expensive commercial software or to the purchase of a digital model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the reduced co-relationship between conventional flat Petri dish culture (two-dimensional) and the tumour microenvironment, there has been a shift towards three-dimensional culture systems that show an improved analogy to the same. In this work, an extracellular matrix (ECM)-mimicking three-dimensional scaffold based on chitosan and gelatin was fabricated and explored for its potential as a tumour model for lung cancer. It was demonstrated that the chitosan-gelatin (CG) scaffolds supported the formation of tumoroids that were similar to tumours grown in vivo for factors involved in tumour-cell-ECM interaction, invasion and metastasis, and response to anti-cancer drugs. On the other hand, the two-dimensional Petri dish surfaces did not demonstrate gene-expression profiles similar to tumours grown in vivo. Further, the three-dimensional CG scaffolds supported the formation of tumoroids, using other types of cancer cells such as breast, cervix and bone, indicating a possible wider potential for in vitro tumoroid generation. Overall, the results demonstrated that CG scaffolds can be an improved in vitro tool to study cancer progression and drug screening for solid tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its complex honeycomb structure, the numerical modeling of the geocell has always been a big challenge. Generally, the equivalent composite approach is used to model the geocells. In the equivalent composite approach, the geocellsoil composite is treated as the soil layer with improved strength and stiffness values. Though this approach is very simple, it is unrealistic to model the geocells as the soil layer. This paper presents a more realistic approach of modeling the geocells in three-dimensional (3D) framework by considering the actual curvature of the geocell pocket. A square footing resting on geocell reinforced soft clay bed was modeled using the ``fast Lagrangian analysis of continua in 3D'' (FLAC(3D)) finite difference package. Three different material models, namely modified Cam-clay, Mohr-Coulomb, and linear elastic were used to simulate the behaviour of foundation soil, infill soil and the geocell, respectively. It was found that the geocells distribute the load laterally to the wider area below the footing as compared to the unreinforced case. More than 50% reduction in the stress was observed in the clay bed in the presence of geocells. In addition to geocells, two other cases, namely, only geogrid and geocell with additional basal geogrid cases were also simulated. The numerical model was systematically validated with the results of the physical model tests. Using the validated numerical model, parametric studies were conducted to evaluate the influence of various geocell properties on the performance of reinforced clay beds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal reaction of Ln(NO3)(3), Ni(NO3)(2), NaN3, and isonicotinic acid (L) yielded two novel 3-D coordination frameworks (1 and 2) of general formula [Ni(2)Ln(L)(5)(N-3)(2)(H2O)(3)] center dot 2H(2)O (Ln = Pr(III) for 1 and Nd(III) for 2), containing Ni-Pr or Ni-Nd hybrid extended three-dimensional networks containing both azido and carboxylate as co-ligands. Both the compounds are found to be isostructural and crystallize in monoclinic system having P2(1)/n space group. Here the lanthanide ions are found to be nonacoordinated. Both bidentate and monodentate modes of binding of the carboxylate with the lanthanides have been observed in the above complexes. Variable temperature magnetic studies of the above two complexes have been investigated in the temperature range 2-300 K which showed dominant antiferromagnetic interaction in both the cases and these experimental results are analyzed with the theoretical models. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of equations describing completely the optical phenomena in a model involving continuous rotation of secondary axes and secondary principal-stress differences are obtained. These are solved by Peano-Baker method using experimentally determined characteristic parameters for several wavelengths of light. Experimental verifications are obtained for a rectangular bar subjected to combined torsion and tension. Paper was presented at Third SESA International Congress on Experimental Mechanics held in Los Angeles, CA on May 13–18, 1973.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of equations describing completely the optical phenomena in a model involving continuous rotation of secondary axes and secondary principal-stress differences are obtained. These are solved by Peano-Baker method using experimentally determined characteristic parameters for several wavelengths of light. Experimental verifications are obtained for a rectangular bar subjected to combined torsion and tension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cases whazo zotatLon of the seoondazy pztncipal 8tzo,ae axes along tha light path ,exists, it is always poaeible to detezmlna two dizactions along which plane-polazlaad light ,antazlng the model ,amerCe8 as plene-pela~l,aed light fzom the model. Puzth,az the nat zstazdatton Pot any light path is dlff,azant Prom the lntsgtatad zetazd,ation Pat the l£ght path nogZsctlng the ePfsct or z,atation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.