27 resultados para Physical and revestments

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 A degrees C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm(-1) has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zn-i). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g(-1) even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reports the preparation of fly ash cenospheres bearing polymer composites, using various polymer matrix materials namely, low density polyethylene, high density polyethylene, polystyrene and polymethylmethacrylate followed by evaluation of properties. The composites are synthesized by including about 18% by weight fly ash cenospheres, into various polymer matrices using brabender facility in the temperature range 120-160 degrees C and at a mixing pressure of 50 MPa. Subsequently, they are cast into sheets through compression moulding. The test samples, made from the sheets, are characterized for physical as well as mechanical properties such as density, hardness, compression strength, impact response, wear and friction. The investigation reveals that the addition of fly ash cenospheres to various polymer matrices results in reduction of density. Further, improvements in the slide wear resistance and decrease in the co-efficient of friction values are noticed. As for interpreting the slide wear data, recourse to examination under scanning electron microscope is made in this paper. As regards the mechanical properties, hardness increases while the compression strength and impact energy decreases with inclusion of cenospheres in all the four types of samples investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analyses of rocket data at mid- and high-latitude locations over the American Continent show a solar activity-dependent mesospheric heating effect in the 60 to 90 km altitude region. A study of the altitude dependence of the effect shows that the heating and associated processes propagating downwards through the mesosphere do not cause discernible effects, below the 50 to 60 km layer. At Thumba, a significant short-term heating effect attributable to varying solar ultraviolet fluxes causing variable heating of atmospheric ozone is observed. This effect does not seem to propagate downwards into the upper stratosphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rice husk ash (about 95% silica) with known physical and chemical characteristics has been reacted with lime and water. The setting process for a lime-excess and a lime-deficient mixture has been investigated. The product of the reaction has been shown to be a calcium silicate hydrate, C-S-H(I)+ by a combination of thermal analysis, XRD and electron microscopy. Formation of C-S-H(I) accounts for the strength of lime-rice husk ash cement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{45}$, L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ and L$_{23}$ M$_{23}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ Auger intensity ratios in transition metal oxides and sulphides are shown to be directly related to the number of valence electrons in the metal as well as to its oxidation state. The metal Auger intensity ratios provide a unique probe, independent of O (KLL) intensity, to study surface oxidation states of metals. These intensity ratios have been effectively employed to investigate surface oxidation of nickel, iron and copper. The oxidation studies have unravelled some interesting aspects of surface oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solidification processes are complex in nature, involving multiple phases and several length scales. The properties of solidified products are dictated by the microstructure, the mactostructure, and various defects present in the casting. These, in turn, are governed by the multiphase transport phenomena Occurring at different length scales. In order to control and improve the quality of cast products, it is important to have a thorough understanding of various physical and physicochemical phenomena Occurring at various length scales. preferably through predictive models and controlled experiments. In this context, the modeling of transport phenomena during alloy solidification has evolved over the last few decades due to the complex multiscale nature of the problem. Despite this, a model accounting for all the important length scales directly is computationally prohibitive. Thus, in the past, single-phase continuum models have often been employed with respect to a single length scale to model solidification processing. However, continuous development in understanding the physics of solidification at various length scales oil one hand and the phenomenal growth of computational power oil the other have allowed researchers to use increasingly complex multiphase/multiscale models in recent. times. These models have allowed greater understanding of the coupled micro/macro nature of the process and have made it possible to predict solute segregation and microstructure evolution at different length scales. In this paper, a brief overview of the current status of modeling of convection and macrosegregation in alloy solidification processing is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanostructured MnO2 was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer-Emmett-Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared MnO2 was amorphous and contained particles of 5-10 nm diameter. Upon annealing at temperatures >400°C, the amorphous MnO2 attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge-discharge cycling in a potential range from -0.2 to 1.0 V vs SCE in 0.1 M sodium sulfate solution. Specific capacitance of about 250 F g-1 was obtained at a current density of 0.5 mA cm-2(0.8 A g-1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tri(amino)silanes were prepared by the condensation of trichlorosilane with secondary amines in 1:6 molar ratio. Reactions of trichlorosilane with pyrrolidine, piperidine, hexamethyleneimine, morpholine, N-methylpiperazine and diethylamine afford the tri(amino)silanes in nearly quantitative yields. Their physical and spectroscopic properties are discussed. All these compounds are highly sensitive to moisture and hydrolyse to silica and the respective amine with the evolution of hydrogen. The compounds have been characterised by IR, 1H NMR, [1H]29Si NMR spectroscopic methods and CHN elemental analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of ultrafast lasers to chemistry and biology has been an active area of research in the international scene for over a decade for physical and biophysical chemists. Perhaps, ultrafast laser spectroscopy is one of the most versatile tools available today to experimentally study structure and dynamics in the time domain of nanoseconds (10(-9) sec) to femtoseconds (10(-15) sec). In this article we attempt to highlight some of the recent developments in ultrafast laser spectroscopy with particular reference to vibrational spectroscopy, viz. infrared and Raman spectroscopy, in the above time domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.