7 resultados para Pests
em Indian Institute of Science - Bangalore - Índia
Resumo:
Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops.
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.
Resumo:
Fenvalerate is a commonly used pyrethroid insecticide, used to control a wide range of pests. We have studied its interaction with the membrane using fluorescence polarization and differential scanning calorimetry (DSC) techniques. Fenvalerate was found to decrease the DPH fluorescence polarization value of synaptosomal and microsomal membrane, implicating that it makes the membrane more fluid. At different concentrations of fenvalerate, the activation energy of the probe molecule in the membrane also changes revealed from the change in slope of the Arrhenius plot. At higher concentrations the insecticide slowly saturates the membrane. The effects of fenvalerate on model membrane were also studied with liposomes reconstituted with dipalmitoylphosphatidylcholine (DPPC). Fenvalerate decreased the phase transition temperature (Tm) of DPPC by 1.5 °C at 40 μM concentration, but there was no effect on the cooperativity of the transition as interpreted from the DSC thermogram. From the change in the thermogram profile with fenvalerate it has been interpreted that it localizes in the acyl chain region of the lipid, possibly between C10 and C16 region and weakens the acyl chain packing. Fenvalerate was also found to interact with DPPC liposomes containing cholesterol to fluidize it.
Resumo:
: We illustrate how climatological information about adverse weather events and meteorological forecasts (when available) can be used to decide between alternative strategies so as to maximize the long-term average returns for rainfed groundnut in semi-arid parts of Karnataka, We show that until the skill of the forecast, i.e. probability of an adverse event occurring when it is forecast, is above a certain threshold, the forecast has no impact on the optimum strategy, This threshold is determined by the loss in yield due to the adverse weather event and the cost of the mitigatory measures, For the specific case of groundnut, it is found that while for combating some pests/diseases, climatological information is adequate, for others a forecast of sufficient skill would have a significant impact on the productivity.
Resumo:
Fruit flies that belong to the genus Bactrocera (Diptera: Tephritidae) are major invasive pests of agricultural crops in Asia and Australia. Increased transboundary movement of agricultural produce has resulted in the chance introduction of many invasive species that include Bactrocera mainly as immature stages. Therefore quick and accurate species diagnosis is important at the port of entry, where morphological identification has a limited role, as it requires the presence of adult specimens and the availability of a specialist. Unfortunately when only immature stages are present, a lacunae in their taxonomy impedes accurate species diagnosis. At this juncture, molecular species diagnostics based on COX-I have become handy, because diagnosis is not limited by developmental stages. Yet another method of quick and accurate species diagnosis for Bactrocera spp. is based on the development of species-specific markers. This study evaluated the utility of COX-I for the quick and accurate species diagnosis of eggs, larvae, pupae and adults of B. zonata Saunders, B. tau Walker, and B. dorsalis Hendel. Furthermore the utility of species-specific markers in differentiating B. zonata (500bp) and B. tau (220bp) was shown. Phylogenetic relationships among five subgenera, viz., Austrodacus, Bactrocera, Daculus, Notodacus and Zeugodacus have been resolved employing the 5' region of COX-I (1490-2198); where COX-I sequences for B. dorsalis Hendel, B. tau Walker, B. correcta Bezzi and B. zonata Saunders from India were compared with other NCBI-GenBank accessions. Phylogenetic analysis employing Maximum Parsimony (MP) and Bayesian phylogenetic approach (BP) showed that the subgenus Bactrocera is monophyletic.
Resumo:
In this study we analyzed climate and crop yields data from Indian cardamom hills for the period 1978-2007 to investigate whether there were significant changes in weather elements, and if such changes have had significant impact on the production of spices and plantation crops. Spatial and temporal variations in air temperatures (maximum and minimum), rainfall and relative humidity are evident across stations. The mean air temperature increased significantly during the last 30 years; the greatest increase and the largest significant upward trend was observed in the daily temperature. The highest increase in minimum temperature was registered for June (0.37A degrees C/18 years) at the Myladumpara station. December and January showed greater warming across the stations. Rainfall during the main monsoon months (June-September) showed a downward trend. Relative humidity showed increasing and decreasing trends, respectively, at the cardamom and tea growing tracts. The warming trend coupled with frequent wet and dry spells during the summer is likely to have a favorable effect on insect pests and disease causing organisms thereby pesticide consumption can go up both during excess rainfall and drought years. The incidence of many minor pest insects and disease pathogens has increased in the recent years of our study along with warming. Significant and slight increases in the yield of small cardamom (Elettaria cardamomum M.) and coffee (Coffea arabica), respectively, were noticed in the recent years.; however the improvement of yield in tea (Thea sinensis) and black pepper (Piper nigrum L.) has not been seen in our analysis.