7 resultados para Peri-urban agriculture
em Indian Institute of Science - Bangalore - Índia
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up-to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat-TM/ETM+, IRS-ICID LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (similar to 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 in), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end-members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications. Index Terms-Remote sensing, digital
Resumo:
In this paper, we discuss the measurements of spectral surface reflectance (rho(s)(lambda)) in the wavelength range 350-2500 nm measured using a spectroradiometer onboard a low-flying aircraft over Bangalore (12.95 degrees N, 77.65 degrees E), an urban site in southern India. The large discrepancies in the retrieval of aerosol propertiesover land by the Moderate-Resolution Imaging Spectroradiometer (MODIS), which could be attributed to the inaccurate estimation of surface reflectance at many sites in India and elsewhere, provided motivation for this paper. The aim of this paper was to verify the surface reflectance relationships assumed by the MODIS aerosol algorithm for the estimation of surface reflectance in the visible channels (470 and 660 nm) from the surface reflectance at 2100 nm for aerosol retrieval over land. The variety of surfaces observed in this paper includes green and dry vegetations, bare land, and urban surfaces. The measuredreflectance data were first corrected for the radiative effects of atmosphere lying between the ground and aircraft using the Second Simulation of Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The corrected surface reflectance in the MODIS's blue (rho(s)(470)), red (rho(s)(660)), and shortwave-infrared (SWIR) channel (rho(s)(2100)) was linearly correlated. We found that the slope of reflectance relationship between 660 and 2100 nm derived from the forward scattering data was 0.53 with an intercept of 0.07, whereas the slope for the relationship between the reflectance at 470 and 660 nm was 0.85. These values are much higher than the slope (similar to 0.49) for either wavelengths assumed by the MODIS aerosol algorithm over this region. The reflectance relationship for the backward scattering data has a slope of 0.39, with an intercept of 0.08 for 660 nm, and 0.65, with an intercept of 0.08 for 470 nm. The large values of the intercept (which is very small in the MODIS reflectance relationships) result in larger values of absolute surface reflectance in the visible channels. The discrepancy between the measured and assumed surface reflectances could lead to error in the aerosol retrieval. The reflectance ratio (rho(s)(660)/rho(s)(2100)) showed a clear dependence on the N D V I-SWIR where the ratio increased from 0.5 to 1 with an increase in N V I-SWIR from 0 to 0.5. The high correlation between the reflectance at SWIR wavelengths (2100, 1640, and 1240 nm) indicated an opportunity to derive the surface reflectance and, possibly, aerosol properties at these wavelengths. We need more experiments to characterize the surface reflectance and associated inhomogeneity of land surfaces, which play a critical role in the remote sensing of aerosols over land.
Resumo:
The technology scene in India is at one and the same time promising, frustrating and fascinating. Three broad areas in technology development can be distinguished. The first is relatively small scale; it is typified by the absorption of products of the industrial revolution into the repertoire of the Indian artisan and craftsman, examples being diesel engines from Kolhapur and centrifugal pumps from Coimbatore. The second class is essentially 'state technology', developed at public expense by national commissions: agriculture, atomic energy and space are examples. There is a vast third area in both private and public sector, covering products for the urban consumer and the state (e.g. r defence); this area has largely remained colonial. The factors affecting the three areas of technology are described and analysed from the point of view of an Indian scientistengineer; and it is concluded that the enormous potential of the country's human and mat.erial resources is not only unrealized, but even unrecognized as yet.
Resumo:
Urban growth identification, quantification, knowledge of rate and the trends of growth would help in regional planning for better infrastructure provision in environmentally sound way. This requires analysis of spatial and temporal data, which help in quantifying the trends of growth on spatial scale. Emerging technologies such as Remote Sensing, Geographic Information System (GIS) along with Global Positioning System (GPS) help in this regard. Remote sensing aids in the collection of temporal data and GIS helps in spatial analysis. This paper focuses on the analysis of urban growth pattern in the form of either radial or linear sprawl along the Bangalore - Mysore highway. Various GIS base layers such as builtup areas along the highway, road network, village boundary etc. were generated using collateral data such as the Survey of India toposheet, etc. Further, this analysis was complemented with the computation of Shannon's entropy, which helped in identifying prevalent sprawl zone, rate of growth and in delineating potential sprawl locations. The computation Shannon's entropy helped in delineating regions with dispersed and compact growth. This study reveals that the Bangalore North and South taluks contributed mainly to the sprawl with 559% increase in built-up area over a period of 28 years and high degree of dispersion. The Mysore and Srirangapatna region showed 128% change in built-up area and a high potential for sprawl with slightly high dispersion. The degree of sprawl was found to be directly proportional to the distances from the cities.
Resumo:
Urban sprawl is the outgrowth along the periphery of cities and along highways. Although an accurate definition of urban sprawl may be debated, a consensus is that urban sprawl is characterized by an unplanned and uneven pattern of growth, driven by multitude of processes and leading to inefficient resource utilization. Urbanization in India has never been as rapid as it is in recent times. As one of the fastest growing economies in the world, India faces stiff challenges in managing the urban sprawl, while ensuring effective delivery of basic services in urban areas. The urban areas contribute significantly to the national economy (more than 50% of GDP), while facing critical challenges in accessing basic services and necessary infrastructure, both social and economic. The overall rise in the population of the urban poor or the increase in travel times due to congestion along road networks are indicators of the effectiveness of planning and governance in assessing and catering for this demand. Agencies of governance at all levels: local bodies, state government and federal government, are facing the brunt of this rapid urban growth. It is imperative for planning and governance to facilitate, augment and service the requisite infrastructure over time systematically. Provision of infrastructure and assurance of the delivery of basic services cannot happen overnight and hence planning has to facilitate forecasting and service provision with appropriate financial mechanisms.
Resumo:
In this paper, we examine the major predictions made so far regarding the nature of climate change and its impacts on our region in the light of the known errors of the set of models and the observations over this century. The major predictions of the climate models about the impact of increased concentration of greenhouse gases ave at variance with the observations over the Indian region during the last century characterized by such increases and global warming. It is important to note that as far as the Indian region is concerned, the impact of year-to-year variation of the monsoon will continue to be dominant over longer period changes even in the presence of global warming. Recent studies have also brought out the uncertainties in the yields simulated by crop models. It is suggested that a deeper understanding of the links between climate and agricultural productivity is essential for generating reliable predictions of impact of climate change. Such an insight is also required for identifying cropping patterns and management practices which are tailored for sustained maximum yield in the face of the vagaries of the monsoon.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.