310 resultados para Pattern-formation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eutectic growth is an interesting example for exploring the topic of pattern-formation in multi-phase systems, where the growth of the phases is coupled with the diffusive transport of one or more components in the melt. While in the case of binary alloys, the number of possibilities are limited (lamellae, rods, labyrinth etc.), their number rapidly increases with the number of components and phases. In this paper, we will investigate pattern formation during three-phase eutectic solidification using a state-of-the art phase-field method based on the grand-canonical density formulation. The major aim of the study is to highlight the role of two properties, which are the volume fraction of the solid phases and the solid-liquid interfacial energies, in the self-organization of the solid phases during directional growth. Thereafter, we will show representative phase-field simulations of a micro-structure in a real alloy (Ag-Al-Cu) using an asymmetric phase diagram as well as interfacial properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract. We have used chlortetracycline (CTC) as a fluorescent probe to detect the distribution of sequestered calcium in multicellular stages of Dictyostelium discoideum. Tips of late aggregates, slugs and early culminating masses fluoresce very strongly. Most of the fluorescence is intracellular in origin and emanates from a small number of intense punctate sources. The sources correspond in part to autophagic vacuoles viz. neutral-red staining, acidic digestive vesicles, and may also include intracellular organelles; cytoplasmic fluorescence is much weaker in comparison. The level of fluorescence drops in the middle portion of slugs and rises again in the posteriormost region, though not to as high a level as in the tip. This holds good irrespective of whether CTC is applied only in the neighbourhood of the aggregate centre, only in the aggregate periphery, or to the whole aggregate. We infer that there must be a good deal of mixing in the stages leading from aggregation to slug formation; thus the serial order in which cells enter an aggregate does not bear any relation to their ultimate fates. The other implication of our study is that calcium sequestration is much more extensive in prestalk and anterior-like cells than in prespore cells. These findings are discussed with regard to possible implications for pattern formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flower development provides a model system to study mechanisms that govern pattern formation in plants. Most flowers consist of four organ types that are present in a specific order from the periphery to the centre of the flower. Reviewed here are studies on flower development in two model species: Arabidopsis thaliana and Antirrhinum majus that focus on the molecular genetic analysis of homeotic mutations affecting pattern formation in the flower. Based on these studies a model was proposed that explains how three classes of regulatory genes can together control the development of the correct pattern of organs in the flower. The universality of the basic tenets of the model is apparent from the analysis of the homologues of the Arabidopsis genes from other plant species

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eutectic growth offers a variety of examples for pattern formation which are interesting both for theoreticians as well as experimentalists. One such example of patterns is ternary eutectic colonies which arise as a result of instabilities during growth of two solid phases. Here, in addition to the two major components being exchanged between the solid phases during eutectic growth, there is an impurity component which is rejected by both solid phases. During progress of solidification, there develops a boundary layer of the third impurity component ahead of the solidification front of the two solid phases. Similar to Mullins-Sekerka type instabilities, such a boundary layer tends to make the global solidification envelope unstable to morphological perturbations giving rise to two-phase cells. This phenomenon has been studied numerically in two dimensions for the conditions of directional solidification, by Plapp and Karma (Phys Rev E 66:061608, 2002) using phase-field simulations. While, in the work by Plapp and Karma (Phys Rev E 66:061608, 2002) all interfaces are isotropic, in our presentation, we extend the phase-field model by considering interfacial anisotropy in the solid-solid and solid-liquid interfaces and characterize the role of interfacial anisotropy on the stability of the growth front through phase-field simulations in two dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants exhibit certain intra-fruit positional patterns in the development of seeds. These patterns have been generally interpreted to be a consequence of resource and fertilization gradients. However, such positional patterns might also be shaped by the 'neighbour effect', wherein formation and development of a seed at any position might positively or negatively influence those of other seeds in the neighbourhood. In this article, we examine the role of such neighbour effect in shaping the positional pattern of seeds in the pods of Erythrina suberosa. The results suggest the existence of a positive neighbour effect leading to a higher frequency of seeds in contiguous positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pd/CeO2 (1 at. %) prepared by the solution-combustion method shows a higher catalytic activity for CO oxidation and NO reduction than Pd metal, PdO, and Pd dispersed over CeO2 by the conventional method. To understand the higher catalytic properties, the structure of 1 at. % Pd/CeO2 catalyst material has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The diffraction lines corresponding to Pd or PdO are not observed in the high-resolution XRD pattern of 1 at. % Pd/CeO2. The structure of 1 at. % Pd/CeO2 could be refined for the composition of Ce0.99Pd0.01O1.90 in the fluorite structure with 5% oxide ion vacancy. Pd(3d) peaks in the XPS in I at. % Pd/CeO2 are shifted by 3 eV indicating that Pd is in a highly ionic +2 state. EXAFS studies show the average coordination number of 3 around Pd2+ ion in the first shell of 1 at. % Pd/CeO2 at a distance of 2.02 Angstrom, instead of 4 as in PdO. The second shell at 2.72 Angstrom is due to Pd-Pd correlation which is larger than 2.69 Angstrom in PdO. The third shell at 3.31 Angstrom having 7 coordination is absent either in Pd metal or PdO, which can be attributed to -Pd2+-Ce4+- correlation. Thus, 1 at. % Pd/CeO2 forms the Ce1-xPdxO2-delta type of solid solution having -Pd2+-O-2-Ce4+- kinds of linkages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture influences friction and transfer layer formation during sliding. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the effect of directionality of surface grinding marks of hard material on friction and transfer layer formation during sliding against soft materials. 080 M40 steel plates were ground to attain different surface roughness with unidirectional grinding marks. Then pins made of soft materials such as pure Al, pure Mg and Al-Mg alloy were slid against the prepared steel plates. Grinding angle (i.e., the angle between direction of sliding and grinding marks) was varied between 0 degrees and 90 degrees in the tests. Experiments were conducted under both dry and lubricated conditions on each plate in ambient environment. It was observed that the transfer layer formation and the coefficient of friction, which has two components adhesion and plowing - depend primarily on the directionality of grinding marks of the harder mating surface, and independent of surface roughness of the harder mating surface. For the case of pure Mg, stick-slip phenomenon was observed under dry condition for all grinding angles and it was absent upto 20 degrees grinding angles under lubricated condition. However, for the case of Al, it was observed only under lubricated conditions for angles exceeding 20 degrees. As regards the alloy, namely, Al-Mg alloy, it, was absent in both conditions. For the case of pure Mg and Al, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The grinding angle effect on coefficient of friction was attributed to the variation of plowing component of friction with grinding angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture plays an important role in the frictional behavior and transfer layer formation of contacting surfaces. In the present investigation, basic experiments were conducted using an inclined pin-on-plate sliding apparatus to better understand the role of surface texture on the coefficient of friction and the formation of a transfer layer. In the experiments, soft HCP materials such as pure Mg and pure Zn were used for the pins and a hardened 080 M40 steel was used for the plate. Two surface parameters of the steel plates—roughness and texture—were varied in tests that were conducted at a sliding speed of 2 mm/s in ambient conditions under both dry and lubricated conditions. The morphologies of the worn surfaces of the pins and the formation of the transfer layer on the counter surfaces were observed using a scanning electron microscope. In the experiments, the occurrence of stick-slip motion, the formation of a transfer layer, and the value of friction were recorded. With respect to the friction, both adhesion and plowing components were analyzed. Based on the experimental results, the effect of surface texture on the friction was attributed to differences in the amount of plowing. Both the plowing component of friction and the amplitude of stick-slip motion were determined to increase surface textures that promote plane strain conditions and decrease the textures that favor plane stress conditions.