215 resultados para Parallel plates
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
Free convection heat transfer in vertical concentric, cylindrical annuli is investigated analytically and experimentally. The approximate double boundary layer model used by Emery and Chu for the case of vertical parallel plates is extended to the present case in obtaining heat transfer correlations in laminar free convection. Different correlations for the inner cylinder depending on the radius to the length ratio of the inner cylinder and the Rayleigh number, were used in the derivation of correlations for the annuli. The results for the case of short cylinders inside tubes are in agreement (within about 10 per cent) with the existing correlations. For other cases, namely long cylinders in annuli and wires in annuli, experiments conducted show the agreement of the analysis with experiments.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.
Resumo:
Charts relating the capacitance to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. These are used to design hairpin line and hybrid hairpin line filters as well as multiplexers using microstrip comb line filters. The experimental results agree reasonably well with the design specifications. Getsinger's original charts for parallel coupled bars between parallel plates have been formulated for the microstrip case. Corresponding charts relating the capacitances to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. Examples of the use of these charts are shown in the design of hairpin lines and hybrid hairpin line filters as well as multiplexers using comb line filters. The hairpin line/hybrid hairpin line filters were designed to operate at a central frequency of 9÷5 GHz with 11 per cent bandwidth and 0÷5 dB ripple. The three filters constituting the comb line filters have center frequencies of 2÷4, 3÷0 and 3÷6 GHz. The components so designed were fabricated and tested. The dielectric used for the microstrip was teflon. Experimental curves for the attenuation (insertion loss) and VSWR are given. The design specifications arc satisfied quite well.
Resumo:
This article reports experimental results on supersonic combustion in a new facility. The facility is a combustion-driven shock tunnel, which is cheaper to build than the facilities in which such experiments are carried out conventionally. The observation region is a zone between two parallel flat plates with a 33 degrees wedge attached to the upstream end of the bottom plate. Gaseous hydrogen is injected at an angle of 45 degrees into an oncoming supersonic flow of Mach 2 (approximate) from a port on the bottom plate. The resulting flow field is visualized by a high speed camera in a dark background. Three different test gases, namely nitrogen, air, and oxygen-rich air are used, and the results are compared. A distinct luminosity due to combustion for oxygen-containing test gases is observed. Heat-transfer rates on a probe placed at the downstream end of the observation region and midway between the parallel plates are measured and compared for the three cases. Wall static pressure at 28 mm downstream of the injection port on the bottom plate is also presented.
Resumo:
We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.
Natural frequencies of rectangular orthotropic plates with a pair of parallel edges simply supported
Resumo:
Solutions of the exact characteristic equations for the title problem derived earlier by an extension of Bolotin's asymptotic method are considered. These solutions, which correspond to flexural modes with frequency factor, R, greater than unity, are expressed in convenient forms for all combinations of clamped, simply supported and free conditions at the remaining pair of parallel edges. As in the case of uniform beams, the eigenvalues in the CC case are found to be equal to those of elastic modes in the FF case provided that the Kirchoff's shear condition at a free edge is replaced by the condition. The flexural modes with frequency factor less than unity are also investigated in detail by introducing a suitable modification in the procedure. When Poisson's ratios are not zero, it is shown that the frequency factor corresponding to the first symmetric mode in the free-free case is less than unity for all values of side ratio and rigidity ratios. In the case of one edge clamped and the other free it is found that modes with frequency factor less than unity exist for certain dimensions of the plate—a fact hitherto unrecognized in the literature.
Resumo:
A TEM study of the interphase boundary structure of 9R orthorhombic alpha1' martensite formed in beta' Cu---Zn alloys shows that it consists of a single array of dislocations with Burgers vector parallel to left angle bracket110right-pointing angle beta and spaced about 3.5 nm apart. This Burgers vector lies out of the interface plane; hence the interface dislocations are glissile. Unexpectedly, though, the Burgers vectors of these dislocations are not parallel when referenced to the matrix and the martensite lattices. This finding is rationalized on published hard sphere models as a consequence of relaxation of a resultant of the Bain strain and lattice invariant shear displacements within the matrix phase.
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Diffraction Of Elastic Waves By Two Parallel Rigid Strips Embedded In An Infinite Orthotropic Medium
Resumo:
The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.