168 resultados para Parallel Evolutionary Algorithms

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maintaining population diversity throughout generations of Genetic Algorithms (GAs) is key to avoid premature convergence. Redundant solutions is one cause for the decreasing population diversity. To prevent the negative effect of redundant solutions, we propose a framework that is based on the multi-parents crossover (MPX) operator embedded in GAs. Because MPX generates diversified chromosomes with good solution quality, when a pair of redundant solutions is found, we would generate a new offspring by using the MPX to replace the redundant chromosome. Three schemes of MPX will be examined and will be compared against some algorithms in literature when we solve the permutation flowshop scheduling problems, which is a strong NP-Hard sequencing problem. The results indicate that our approach significantly improves the solution quality. This study is useful for researchers who are trying to avoid premature convergence of evolutionary algorithms by solving the sequencing problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the design and implementation of a single shared bus, shared memory multiprocessing system using Intel's single board computers is presented. The hardware configuration and the operating system developed to execute the parallel algorithms are discussed. The performance evaluation studies carried out on Image are outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, three parallel polygon scan conversion algorithms have been proposed, and their performance when executed on a shared bus architecture has been compared. It has been shown that the parallel algorithm that does not use edge coherence performs better than those that use edge coherence. Further, a multiprocessing architecture has been proposed to execute the parallel polygon scan conversion algorithms more efficiently than a single shared bus architecture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, efficient scheduling algorithms based on Lagrangian relaxation have been proposed for scheduling parallel machine systems and job shops. In this article, we develop real-world extensions to these scheduling methods. In the first part of the paper, we consider the problem of scheduling single operation jobs on parallel identical machines and extend the methodology to handle multiple classes of jobs, taking into account setup times and setup costs, The proposed methodology uses Lagrangian relaxation and simulated annealing in a hybrid framework, In the second part of the paper, we consider a Lagrangian relaxation based method for scheduling job shops and extend it to obtain a scheduling methodology for a real-world flexible manufacturing system with centralized material handling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method of specifying the syntax of programming languages, known as hierarchical language specifications (HLS), is proposed. Efficient parallel algorithms for parsing languages generated by HLS are presented. These algorithms run on an exclusive-read exclusive-write parallel random-access machine. They require O(n) processors and O(log2n) time, where n is the length of the string to be parsed. The most important feature of these algorithms is that they do not use a stack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new parallel algorithm for transforming an arithmetic infix expression into a par se tree is presented. The technique is based on a result due to Fischer (1980) which enables the construction of the parse tree, by appropriately scanning the vector of precedence values associated with the elements of the expression. The algorithm presented here is suitable for execution on a shared memory model of an SIMD machine with no read/write conflicts permitted. It uses O(n) processors and has a time complexity of O(log2n) where n is the expression length. Parallel algorithms for generating code for an SIMD machine are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of CSP-S (a subset of CSP)—a high level language for distributed programming—is presented in this paper. The language CSP-S features a parallel command, communication by message passing and the use of guarded command. The implementation consists of a compiler translating the CSP-S constructs into intermediate language. The execution is carried out by a scheduler which creates an illusion of concurrency. Using the CSP-S language constructs, distributed algorithms are written, executed and tested with the compiler designed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although various strategies have been developed for scheduling parallel applications with independent tasks, very little work exists for scheduling tightly coupled parallel applications on cluster environments. In this paper, we compare four different strategies based on performance models of tightly coupled parallel applications for scheduling the applications on clusters. In addition to algorithms based on existing popular optimization techniques, we also propose a new algorithm called Box Elimination that searches the space of performance model parameters to determine the best schedule of machines. By means of real and simulation experiments, we evaluated the algorithms on single cluster and multi-cluster setups. We show that our Box Elimination algorithm generates up to 80% more efficient schedule than other algorithms. We also show that the execution times of the schedules produced by our algorithm are more robust against the performance modeling errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational docking of ligands to protein structures is a key step in structure-based drug design. Currently, the time required for each docking run is high and thus limits the use of docking in a high-throughput manner, warranting parallelization of docking algorithms. AutoDock, a widely used tool, has been chosen for parallelization. Near-linear increases in speed were observed with 96 processors, reducing the time required for docking ligands to HIV-protease from 81 min, as an example, on a single IBM Power-5 processor ( 1.65 GHz), to about 1 min on an IBM cluster, with 96 such processors. This implementation would make it feasible to perform virtual ligand screening using AutoDock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.