1 resultado para Palmer, Sophia M. (Sophia Matilda), Lady, 1852-1915.
em Indian Institute of Science - Bangalore - Índia
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (5)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (2)
- Brock University, Canada (35)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (36)
- Center for Jewish History Digital Collections (13)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (3)
- Dalarna University College Electronic Archive (11)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (15)
- Digital Commons @ Winthrop University (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (536)
- Helda - Digital Repository of University of Helsinki (5)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Indian Institute of Science - Bangalore - Índia (1)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (18)
- Ohio University (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (19)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- School of Medicine, Washington University, United States (14)
- South Carolina State Documents Depository (3)
- Universidad Autónoma de Nuevo León, Mexico (10)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (2)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (12)
- University of Michigan (67)
- University of Washington (3)
- WestminsterResearch - UK (2)
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.