20 resultados para Padé approximant.
em Indian Institute of Science - Bangalore - Índia
Resumo:
A reliable protection against direct lightning hit is very essential for satellite launch pads. In view of this, suitable protection systems are generally employed. The evaluation of efficacy of the lightning protection schemes among others requires an accurate knowledge of the consequential potential rise at the struck point and the current injected into soil at the earth termination. The present work has made a detailed effort to deduce these quantities for the lightning protection scheme of the Indian satellite launch pad-I. A reduced scale model of the system with a frequency domain approach is employed for the experimental study. For further validation of the experimental approach, numerical simulations using numerical electromagnetic code-2 are also carried out on schemes involving single tower. The study results on the protection system show that the present design is quite safe with regard to top potential rise. It is shown that by connecting ground wires to the tower, its base current and, hence, the soil potential rise can be reduced. An evaluation of an alternate design philosophy involving insulated mast scheme is also made. The potential rise in that design is quantified and the possibility of a flashover to supporting tower is briefly looked into. The supporting tower is shown to have significant induced currents.
Resumo:
Potential transients are obtained by using “Padé approximants” (an accurate approximation procedure valid globally — not just perturbatively) for all amplitudes of concentration polarization and current densities. This is done for several mechanistic schemes under constant current conditions. We invert the non-linear current-potential relationship in the form (using the Lagrange or the Ramanujan method) of power series appropriate to the two extremes, namely near reversible and near irreversible. Transforming both into the Pad́e expressions, we construct the potential-time profile by retaining whichever is the more accurate of the two. The effectiveness of this method is demonstrated through illustrations which include couplings of homogeneous chemical reactions to the electron-transfer step.
Resumo:
We report the formation of a primitive icosahedral quasicrystal with increased stability in Al Mn-Be alloys close to the compound Al15Mn13Be2, by melt spinning and injection casting. The crystal structure of this compound was unknown. We show that in as-cast as well as heat treated condition the intermetallic phase H1 has a hexagonal structure with lattice parameters a = 1.2295 run and c = 2.4634 nm. The space group is P6(3)/mmc In the injection-cast samples, the quasicrystal coexists with another closely related hexagonal phase H2 with a = 1.2295 nm and c = 1.2317 nm with a possible space group of P6/mmm. This phase exhibits specific orientation relationships with the icosahedral quasicrystal given by [0001](hex)//2f(QC) and [01 (1) over bar0](hex)//5f(QC) where 2f(QC) and 5f(QC) represent twofold and fivefold axes respectively. Electron diffraction patterns from both phases exhibit a close resemblance to the quasicrystalline phase. It is shown that the H1 phase is closely related to mu-Al4Mn with the same e parameter while the a parameter is reduced by tau. Following Kreiner and Franzen, it is postulated that both structures (H1 and H2) can be understood by a simple hexagonal packing of I13 clusters.
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
An in-depth knowledge about the characteristics of lightning generated currents will facilitate evaluation of the interception efficacy of lightning protection systems. In addition, it would aid in extraction of valuable statistics (from measured current data) on local lightning parameters. Incidentally, present day knowledge on characteristics of lightning induced current in typical lightning protection systems is rather limited. This is particularly true with closely interconnected protection systems, like the one employed in Indian Satellite Launch Pad-II. This system is taken as a specific example in the present study. Various aspects suggest that theoretical modelling would be the best possible approach for the intended work. From the survey of pertinent literature, it is concluded that electromagnetic modelling of lightning return-stroke with current source at the channel base is best suited for this study. Numerical electromagnetic code was used for the required electromagnetic field solution and Fourier transform techniques were employed for computing time-domain results. A validation for the numerical modelling is provided by laborator experiments on a reduced scale model of the system. Apart from ascertaining the influence of various parameters, salient characteristics of tower base currents for different kinds of events are deduced. This knowledge can be used in identifying the type of event, as well as its approximate location. A method for estimation of injected stroke current has also been proposed.
Resumo:
We report that an approximant phase was initially obtained in amorphous Ti40Zr20Hf20Pd20 alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (1) phase with a high thermal stability while the cF96 Zr2Ni-type (space group Fd (3) over barm with a = 1.25 nm and 96 atoms cell(-1)) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000 K and then transforms into the Zr2Ni-type phase with an endothermic reaction. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The systems formalism is used to obtain the interfacial concentration transients for power-law current input at an expanding plane electrode. The explicit results for the concentration transients obtained here pertain to arbitrary homogeneous reaction schemes coupled to the oxidant and reductant of a single charge-transfer step and the power-law form without and with a preceding blank period (for two types of power-law current profile, say, (i) I(t) = I0(t−t0)q for t greater-or-equal, slanted t0, I(t) = 0 for t < t0; and (ii) I(t) = I0tq for t greater-or-equal, slanted t0, I(t) = 0 for t < t0). Finally the potential transients are obtained using Padé approximants. The results of Galvez et al. (for E, CE, EC, aC) (J. Electroanal. Chem., 132 (1982) 15; 146 (1983) 221, 233, 243), Molina et al. (for E) (J. Electroanal. Chem., 227 (1987) 1 and Kies (for E) (J. Electroanal. Chem., 45 (1973) 71) are obtained as special cases.
Resumo:
The formation and decomposition of quasicrystalline and crystalline phases in as-rapidly solidified and annealed commercial AISI 2024 aluminum alloy containing 2 wt% Li have been investigated by detailed transmission electron microscopy, including a combination of bright field and dark field imaging, selected area diffraction pattern analysis and energy dispersive X-ray microanalysis. The microstructure of as-melt spun 2024-2Li consists of alpha-Al cells, containing small coherent delta' precipitates, and particles or a continuous network of the icosahedral phase at the cell boundaries. After annealing at 300-degrees-C, the intercellular particles of the icosahedral phase coarsen progressively and assume a more faceted shape; after annealing at 400-degrees-C, particles of the decagonal and crystalline O phases precipitate heterogeneously on preexisting particles of the icosahedral phase; and after annealling at 500-degrees-C, the icosahedral and decagonal phases dissolve completely, and small particles of the crystalline O phase remain together with newly precipitated plates of the T1 phase. The icosahedral phase in melt spun and melt spun/annealed 2024-2Li belongs to the Al6CuLi3 class of icosahedral phases, with a quasilattice constant of 0.51 nm, a stoichiometry of (Al, Si)6(Cu, Mn, Fe) (Li, Mg)3 and an average composition of Al-24.1 at.% Cu-6.4 at.% Mg-1.7 at.% Si-0.3 at.% Mn-0.5 at.% Fe as-melt spun and Al-21.9 at.% Cu-6.3 at.% Mg-1.0 at.% Si-0.5 at.% Fe as-heat-treated. The decagonal phase in melt spun/annealed 2024-2Li belongs to the Al4Mn class of decagonal phases, with a periodicity of 1.23 nm along the 10-fold symmetry axis, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-10.3 at.% Cu-13.8 at.% Mn-2.3 at.% Fe. The crystalline O phase in melt spun/annealed 2024-2Li has an orthorhombic structure with lattice parameters of a = 2.24 nm, b = 2.35 nm and c = 1.23 nm, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-11.0 at.% Cu-14.8 at.% Mn-3.9 at.% Fe. Detailed analysis of selected area diffraction patterns shows a close similarity between the icosahedral, decagonal and crystalline O phases in melt spun and melt spun/annealed 2024-2Li. In particular, the decagonal phase and crystalline O phases have a similar composition, and exhibit an orientation relationship which can be expressed as: [GRAPHICS] suggesting that the orthorhombic O phase is an approximant structure for the decagonal phase.
Resumo:
Electron diffraction studies were carried out to establish the icosahedral phase formation in rapidly quenched Ti-37 at% Mn and Ti-24 at% Mn-13 at% Fe alloys. Distortions in the diffraction spots and diffuse intensities in the diffraction patterns were investigated. The existence of a rational approximant structure and a decagonal like phase are also reported.
Resumo:
A theory is developed for diffusion-limited charge transfer on a non-fractally rough electrode. The perturbation expressions are obtained for concentration, current density and measured diffusion-limited current for arbitrary one- and two-dimensional surface profiles. The random surface model is employed for a rough electrode\electrolyte interface. In this model the gross geometrical property of an electrochemically active rough surface - the surface structure factor-is related to the average electrode current, current density and concentration. Under short and long time regimes, various morphological features of the rough electrodes, i.e. excess area (related to roughness slope), curvature, correlation length, etc. are related to the (average) current transients. A two-point Pade approximant is used to develop an all time average current expression in terms of partial morphological features of the rough surface. The inverse problem of predicting the surface structure factor from the observed transients is also described. Finally, the effect of surface roughness is studied for specific surface statistics, namely a Gaussian correlation function. It is shown how the surface roughness enhances the overall diffusion-limited charge transfer current.
Resumo:
The coexistence of quasicrystals and rational approximant structures (RAS) has been observed in melt-spun Al80Cr14Si6, Al80Mn14Si6 and Al75Mn10Cr5Si10 alloys. The presence of a b.c.c. alpha-AlMnSi phase in Al-Mn-Si and alpha-AlMnSi(Cr) phase in Al-Mn-Cr-Si has been seen. A multiple twinning around an irrational axis of the RAS has been reported in an aggregate of fine size cubic crystallites in all three alloys. Selected area diffraction patterns show that the crystalline aggregate symmetry is linked to the icosahedral point group symmetry (m35). Various ways of expressing the twin relationship in the cubic crystalline aggregates have been discussed. The thermal stability of the icosahedral phase at high temperatures reveals that the icosahedral phase in Al-Mn-Si and Al-Mn-Cr-Si alloys transforms to alpha-AlMnSi at temperatures of 690 and 670 K, respectively. In Al-Cr-Si alloy, heating to a high temperature (615 K) leads to the transformation of the icosahedral phase into a new metastable phase having an ordered cubic structure equivalent to alpha-AlMnSi. The occurrence of multiple twinning leading to icosahedral symmetry in the as-spun Al-Cr-Si alloy is presumably due to this metastable phase. Copyright (C) 1996 Acta Metallurgica Inc.
Resumo:
The study of interfaces in quasicrystalline alloys is relatively new. Apart From the change in orientation, symmetry and chemistry which can occur across homophase and heterophase boundaries in crystalline materials, we have the additional, exciting possibility of an interface between quasicrystalline and its rational approximant. High resolution electron microscopy is a powerful technique to study the structural details of such interfaces. We report the results of a HREM study of the interface between the icosahedral phase and the related Al13Fe4 type monoclinic phase in melt spun and annealed Al65Cu20Fe15 alloy.
Resumo:
Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.
Resumo:
Structural relations between quasicrystalline and related crystalline rational approximant phases have been of interest for some time now. Such relations are now being used to understand interface structures. Interfaces between structural motif - wise related, but dissimilarly periodic phases are expected to show a degree of lattice match in certain directions. Our earlier studies in the Al-Cu-Fe system using the HREM technique has shown this to be true. The structural difference leads to well defined structural ledges in the interface between the icosahedral Al-Cu-Fe phase and the monoclinic Al13Fe4 type phase. In the present paper we report our results on the HREM study of interfaces in Al-Cu-Fe and Al-Pd-Mn systems. The emphasis will be on heterophase interfaces between quasiperiodic and periodic phases, where the two are structurally related. An attempt will be made to correlate the results with calculated lattice projections of the two structures on the grain boundary plane.