193 resultados para PULSE-PROPAGATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of intense coherent light with Frenkel excitons has been studied for investigating the self-induced transparency. Some nonlinear effects neglected before have been included. It is found that the frequency spectrum consistent with the pulse propagation is wider by two orders of magnitude compared with the previous result.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the pulse method in the range of 2 to 26Mc's the ultrasonic absorption, velocity and the adiabatic compressibility have been studied in eleven aqueous acetate solutions up to a concentration of 1 mole/litre. The substances studied are the acetates of lithium, sodium, potassium, ammonium, magnesium, calcium, strontium, barium, zinc, cadmium and lead. Absorption in mercuric acetate has been studied only at 2 and 6 Mc/s. Two regions of relaxation are noticed, one below 10 Mc/s and the other between 10 and 26 Mc/s. The first relaxation is ascribed to the dissociation reaction of the salt and the second one to the monomerdimer reaction of the acetic acid formed by the hydrolysis of the salt in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AISI 4340 steel has been electroslag refined and the improvement in mechanical properties has been assessed. Electroslag refining (ESR) has improved tensile ductility, plane strain fracture toughness, Charpy fracture energy, and has decreased fatigue crack growth rates. The KIC values for the ESR steel are nearly twice those estimated in the unrefined steel and higher than those obtained in the vacuum arc remelted steel. Fatigue crack growth rates in region I and in region III are found to be decreased considerably in the ESR steel, while they are unaffected in region II. Measurements on heat treated samples have shown that the ESR steel has a better response to heat treatment. Both the suggested heat treatments namely austenitizing at 1140–1470 K as well as the conventional heat treatment of austenitizing at 1140 K have been followed. The improvement in the mechanical properties of ESR steel has been explained on the basis of removal of nonmetallic inclusions and reduction in sulfur content in the steel.