77 resultados para PROTON EXCHANGE FUEL CELLS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of bio-composite polymer electrolyte membranes comprising chitosan (CS) and certain biomolecules in particular, plant hormones such as 3-indole acetic acid (IAA), 4-chlorophenoxy acetic acid (CAA) and 1-naphthalene acetic acid (NAA) are explored to realize proton-conducting bio-composite membranes for application in direct methanol fuel cells (DMFCs). The sorption capability, proton conductivity and ion-exchange capacity of the membranes are characterized in conjunction with their thermal and mechanical behaviour. A novel approach to measure the permeability of the membranes to both water and methanol is also reported, employing NMR imaging and volume localized NMR spectroscopy, using a two compartment permeability cell. A DMFC using CS-IAA composite membrane, operating with 2M aqueous methanol and air at 70 degrees C delivers a peak power density of 25 mW/cm(2) at a load current density of 150 mA/cm(2). The study opens up the use of bio-compatible membranes in polymer-electrolyte-membrane fuel cells. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.030111jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrid membranes are prepared from Nafion and acid functionalized aluminosilicate with varying structures and surface areas. Acid-functionalized mesostructured aluminosilicate with cellular foam framework (Al-MSU-F type) of surface area 463 m(2) g(-1), acid-functionalized aluminosilicate molecular sieves (Al-HMS type) of surface area 651 m(2) g(-1) and acid-functionalized mesostructured aluminosilicate with hexagonal network (Al-MCM-41 type) of surface area 799 m(2) g(-1) have been employed as potential filler materials to form hybrid membranes with Nafion. The structural behavior, water uptake, ion-exchange capacity, proton conductivity and methanol permeability of the hybrid membranes are extensively investigated. Direct methanol fuel cells (DMFCs) with Al-HMS-Nafion and Al-MCM-41-Nafion hybrid membranes deliver respective peak power-densities of 170 mW cm(-2) and 246 mW cm(-2), while a peak power-density of only 48 mW cm(-2) is obtained for the DMFC employing pristine recast-Nafion membrane under identical operating conditions. The unique properties associated with hybrid membranes could be exclusively attributed to the presence of pendant sulfonic-acid groups in the filler materials, which provide proton-conducting pathways between the filler and matrix in the hybrid membranes, and facilitate proton transport with adequate balance between proton conductivity and methanol permeability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyvinylidene fluoride (PVDF) membrane is modified by the chemical etchant-route employing a sodium naphthalene charge-transfer complex followed by impregnation with Nafion ionomer or polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) polymeric blend solutions by a dip-coating technique to form pore-filled-membrane electrolytes for application in direct methanol fuel cells (DMFCs). The number of coatings on the surface-modified PVDF membrane is varied between 5 and 15 and is found to be optimum at 10 layers both for Nafion and PVA-PSSA impregnations for effective DMFC performance. Hydrophilicity of the modified-membrane electrolytes is studied by determining average contact angle and surface-wetting energy. Morphology of the membranes is analyzed by a cross-sectional scanning electron microscope. The modified PVDF membrane electrolytes are characterized for their water-methanol sorption in conjunction with their mechanical properties, proton conductivity, and DMFC performance. Air permeability for the modified membranes is studied by a capillary-flow porometer. Methanol crossover flux across modified-PVDF-membrane electrolytes is studied by measuring the mass balance of methanol using a density meter. DMFCs employing membrane electrode assemblies with the modified PVDF membranes exhibit a peak power-density of 83 mW/cm(2) with Nafion impregnation and 59 mW/cm(2) for PVA-PSSA impregnation, respectively. Among the membranes studied here, stabilities of modified-pore-filled PVDF-Nafion and PVDF-PVA-PSSA membranes with 10-layers coat are promising for application in DMFCs. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3518774] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol)hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB(5) Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel,anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a NafionA (R)-117 membrane electrolyte (NME). Peak power densities of similar to 30 and similar to 40 mW cm(-2) are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be similar to 24 and similar to 59%, respectively for the PHME-based DBFC; similar to 18 and similar to 62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of similar to 1 center dot 2 and similar to 1 center dot 4 V, respectively at a load current density of 10 mA cm(-2) for similar to 100 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical oxidation of borohydride is studied on nanosized rhodium, iridium, and bimetallic rhodium-iridium catalysts supported onto Vulcan XC72R carbon. The catalysts are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy in conjunction with cyclic voltammetry and polarization studies. The studies reveal that a 20 wt % bimetallic Rh-Ir catalyst supported onto carbon (Rh-Ir/C) is quite effective for the oxidation of borohydride. Direct borohydride fuel cell with Rh-Ir/C as the anode catalyst and Pt/C as the cathode catalyst exhibits a peak power density of 270 mW/cm(2) at a load current density of 290 mA/cm(2) as against 200 mW/cm(2) at 225 mA/cm(2) for Rh/C and 140 mW/cm(2) at 165 mA/cm(2) for Ir/C while operating at 80 degrees C. The synergistic catalytic activity for the bimetallic Rh-Ir nanoparticles toward borohydride oxidation is corroborated by density-functional theory calculations using electron-localization function. (C) 2010 The Electrochemical Society. [DOI:10.1149/1.3442372] All rights reserved.