371 resultados para PROPYLENE-OXIDE COPOLYMERS
em Indian Institute of Science - Bangalore - Índia
Resumo:
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.
Resumo:
Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.
Resumo:
Poly( ethylene oxide), poly(vinyl alcohol): and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water p-resent in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics.
Resumo:
Mesostructured lamellar chromium oxide with an interlayer separation of 29 Angstrom has been prepared by employing a cationic surfactant. The introduction of phosphate groups in the oxide increases the interlayer separation to 32 Angstrom.
Resumo:
The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.
Resumo:
Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Nine tie-lines between Fe-Ni alloys and FeTiO3-NiTiO3 solid solutions were determined at 1273 K. Samples were equilibrated in evacuated quartz ampoules for periods up to 10 days. Compositions of the alloy and oxide phases at equilibrium were determined by energy-dispersive x-ray spectroscopy. X-ray powder diffraction was used to confirm the results. Attainment of equilibrium was verified by the conventional tie-line rotation technique and by thermodynamic analysis of the results. The tie-lines are skewed toward the FeTiO3 corner. From the tie-line data and activities in the Fe-Ni alloy phase available in the literature, activities of FeTiO3 and NiTiO3 in the ilmenite solid solution were derived using the modified Gibbs-Duhem technique of Jacob and Jeffes [K.T. Jacob and J.H.E. Jeffes, An Improved Method for Calculating Activities from Distribution Equilibria, High Temp. High Press., 1972, 4, p 177-182]. The components of the oxide solid solution exhibit moderate positive deviations from Raoult's law. Within experimental error, excess Gibbs energy of mixing for the FeTiO3-NiTiO3 solid solution at 1273 K is a symmetric function of composition and can be represented as: Delta G(E) = 8590 (+/- 200) X-FeTiO3 X-NiTiO3 J/mol Full spectrum of tie-lines and oxygen potentials for the three-phase equilibrium involving Fe-Ni alloys, FeTiO3-NiTiO3 solid solutions, and TiO2 at 1273 K were computed using results obtained in this study and data available in the literature.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.
Resumo:
Crystal growth of YIG from fluxes containing lead sulphate in place of lead oxide in the usual lead oxide-lead fluoride-boron oxide flux system has been tried. Lead sulphate decomposes during crystal growth giving lead oxide and sulphur trioxide. Due to the influence of sulphur trioxide in the system the yield of crystals almost doubles. There is no change either in the morphology of the crystals or their lattice parameter. It is possible that solubility of YIG is different in the new flux and the changed solubility causes the increase in yield of crystals.
Resumo:
A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.
Resumo:
The composition-controlled metal-insulator transition in the perovskite systems LaNi1-xMxO3 (M = Cr, Mn, Fe, and Co) has been investigated by transport measurements over the temperature range 12-300 K. These systems, which have critical electron densities (nc) in the range (1-2) -1020 electrons cm-3, exhibit sharp metal-insulator transitions at the base temperature. The corresponding minimum metallic conductivity (Ï-min), separating the localized and itinerant electronic regimes, is of the order of 102 ohm-1 cm-1. Particular attention is paid to the idea of Ï-min scaling with nc, and our present results are compared with earlier studies of the metal-insulator transition in low (e.g., Ge:Sb) and high (e.g., metal-ammonia, supercritical Hg) electron-density systems. A link is established between the transport and magnetic properties of the title systems at the metal-insulator transition.
Resumo:
Novel complexes of lanthanide perchlorates with 4-nitroquinoline-1-oxide (NQNO) and 5-nitroisoquinoline-2-oxide (NIQNO) have been prepared and characterized. The complexes have the general formulaeLn(NQNO)8(ClO4)3 (whereLn=La-Nd), Ln(NQNO)7(ClO4)3 (whereLn=Gd-Yb),Ln(NIQNO)9(ClO4)3 (whereLn=La-Nd), andLn(NIQNO)7(ClO4)3 (whereLn=Gd-Yb). The IR, proton NMR spectral data indicate the coordination of the N—O group of the ligands to he lanthanide ions.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.