17 resultados para PROPYLENE
em Indian Institute of Science - Bangalore - Índia
Resumo:
Graft copolymerization of poly(aniline) (PANI) onto poly(propylene) (PP) fibre was carried out in aqueous acidic medium under nitrogen atmosphere by using peroxomonosulphate (PMS) as a lone initiator. The non-conducting fibre was now made into a conducting one through the chemical grafting of PANI units onto the PP fibre backbone. The content of PANI in the backbone was found to vary while varying the [ANI], [PMS] and amount of PP fibre. Various graft parameters were evaluated. The chemical grafting of PANI onto PP fibre was confirmed by conductivity measurements.
Resumo:
Modification of exfoliated graphite (EG) electrode with generation 2 poly(propylene imine) dendrimer by electrodeposition resulted in an electrochemical sensor which was used to detect lead ions in water to a limit of 1 ppb and a linear response between 2.5 and 40 ppb using square wave anodic stripping voltammetry (SW-ASV). Pb(II) was also removed from spiked water sample using a 40-mm diameter unmodified EG electrode with an applied potential of -1,000 mV for 180 min. A removal efficiency of 99% was calculated from a 150 mL sample. The results obtained in both cases using SW-ASV, correlated with atomic absorption spectroscopy.
Resumo:
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.
Resumo:
Solid polymer electrolytes (SPEs) of poly(ethyleneoxide) and magnesium triflate, which are plasticized with propylene carbonate (PC), ethylene carbonate (EC) and a mixture of PC and EC, are studied for their conductivity, ac impedance of the Mg I SPE interface, cyclic voltammetry, infrared spectroscopy and differential scanning calorimetry. in the presence of plasticizers, the ionic conductivity (a) increases from a value of 1 x 10(-8) S cm(-1) to about 1 x 10(-4) S cm(-1) at ambient temperature. The a is found to follow a VTF relationship with temperature. The values of the activation energy, pre-exponential factor and equilibrium glass transition temperature are shown to depend on the concentration of plasticizer. Ac impedance studies indicate lower interfacial impedance of Mg/plasticized SPE than stainless steel/plasticized SPE. The impedance spectra are analyzed using a non-linear least square curve fitting technique and the interfacial resistance of Mg/plasticized SPE is evaluated. The cyclic voltammetric results suggest a quasireversible type of Mg/Mg2+ couple in plasticized SPE. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The saturated liquid density, varrholr, data along the liquid vapour coexistence curve published in the literature for several cryogenic liquids, hydrocarbons and halocarbon refrigerants are fitted to a generalized equation of the following form varrholr = 1 + A(1 − Tr + B(1 − Tr)β The values of β, the index in phase density differences power law, have been obtained by means of two approaches namely statistical treatment of saturated fluid phase density difference data and the existence of a maximum in T(varrho1 − varrhov) along the saturation curve. Values of the constants A and B are determined utilizing the fact that Tvarrho1 has a maximum at a characteristic temperature T. Values of A, B and β are tabulated for Ne, Ar, Kr, Xe, N2, O2, methane, ethane, propane, iso-butane, n-butane, propylene, ethylene, CO2, water, ammonia, refrigerants-11, 12, 12B1, 13, 13B1, 14, 21, 22, 23, 32, 40, 113, 114, 115, 142b, 152a, 216, 245 and azeotropes R-500, 502, 503, 504. The average error of prediction is less than 2%.
Resumo:
Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.
Resumo:
Copper(II) complexes of ethylene/propylene-bis(acetylacetoneimine), Cu(baen) or Cu(bapn), react quickly and quantitatively in aqueous methanol at the methine position with arene diazonium ions in a stepwise manner to yield mono- and di-substituted copper(II) complexes. All the complexes are paramagnetic with μeff∼1.88 B.M. In all the complexes the diazo substituted part of the ligand coordinates to the metal through the agr-nitrogen of the azo group and the imine nitrogen, forming glyoxaliminearylhydrazone type of ligand system. The complexes have been characterized by elemental analysis, electronic, esr, ir and mass spectroscopic methods.
Resumo:
Reactions of [PdIVB-(AI)2]++ [PdIICl4]-- (i) B-(AI)2 = dianion of N,N'-ethylene-/i-propylene-/n-propylene-bis(acetyl-acetoneimine) with some π-acceptor ligands, aliphatic primary amines and nitrosating reagents have been investigated. In all these reactions except nitrosation, 1:1 adducts having the formula, [PdIVB-(AI)2.X] [PdIICl4] [X = triphenylphosphine (TPP), triphenylarsine (TPA), pyridine (Py), methylamine (CH3NH2) or ethylamine (C2H5NH2)] are obtained. The formation of these complexes is associated with a bond isomerization - from Pd-Cxo-π -allylic bond prevailing in [PdIVB-(AI)2]2+ to PdIV-O bonding.Reaction of (i) with nitrosating reagents reduces PdIV to PdII and subsequently transform the γ-CH group, into an ambidentate isonitroso group (°C = NOH). The latter enters into coordination with PdII by dislodging the already coordinated carbonyl group. Further, selective nitrosation (mono- and dinitrosation) has been carried out by controlling the amount of the nitrosating reagent and the reaction time. The complexes have been characterized by elemental analyses, electrical conductivity, magnetic susceptibility and ir spectral data.
Resumo:
A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.
Resumo:
Background and purpose of the study: Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. Methods: Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. Results: The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma concentration of repaglinide from transdermal formulation was maintained higher and for longer time as compared to oral administration of repaglinide. Major conclusion: Results suggest the overwhelming influence of Angelica archengelica in enhancing the percutaneous permeation of repaglinide to be mediated through perturbation of skin lipids and tight junction protein (ZO-1).
Resumo:
Mesoporous MnO2 is prepared from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) as a reducing as well as a structure-directing agent. The as synthesized MnO2 samples are poorly crystalline with mesoporosity having pore diameter between 8 and 40 nm. BET surface area as high as 273 m(2) g(-1) is obtained. By heating, the poorly crystalline MnO2 turns into a well crystalline form at 400 degrees C with nanorod morphology. However, the surface area decreases for the heated samples. Samples of MnO2 prepared by varying the ratio of KMnO4 and the copolymer, and also the heated samples are subjected to electrochemical characterization for supercapacitor studies. High specific capacitance values on mass basis are obtained for the as prepared mesoporous MnO2 samples. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Mesoporous MnO2 samples with average pore-size in the range of 2-20 nm are synthesized in sonochemical method from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as a soft template as well as a reducing agent. The MnO2 samples are found to be poorly crystalline. On increasing the amplitude of sonication, a change in the morphology of MnO2 from nanoparticles to nanorods and also change in porosity are observed. A high BET surface area of 245 m(2) g(-1) is achieved for MnO2 sample. The MnO2 samples are subjected to electrochemical capacitance studies by cyclic voltammetry (CV) and galvanostatic charge-discharge cycling in 0.1 M aqueous Ca(NO3)(2) electrolyte. A maximum specific capacitance (SC) of 265 Fg(-1) is obtained for the MnO2 sample synthesized in sonochemical method using an amplitude of 30 mu m. The MnO2 samples also possess good electrochemical stability due to their favourable porous structure and high surface area. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.
Resumo:
We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. © 2012 Wiley Periodicals, Inc.
Resumo:
We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. (c) 2012 Wiley Periodicals, Inc.