15 resultados para PROPERTY-RIGHTS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

India has been acknowledged as a large reservoir of nature's random mutation, an original 'rich' source of knowledge in the context of international genome studies. Human genome knowledge and the possible understanding of the basis of uniqueness of each individual in chemical terms has presented a number of inescapable challenges to our own jurisprudence philosophies and our ethical sensibilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid beta (A beta) is the major etiological factor implicated in Alzheimer's disease (AD). A beta(42) self-assembles to form oligomers and fibrils via multiple aggregation process. The recent studies aimed to decrease A beta levels or prevention of A beta aggregation which are the major targets for therapeutic intervention. Natural products as alternatives for AD drug discovery are a current trend. We evidenced that Caesalpinia crista leaf aqueous extract has anti-amyloidogenic potential. The studies on pharmacological properties of C. crista are very limited. Our study focused on ability of C. crista leaf aqueous extract on the prevention of (i) the formation of oligomers and aggregates from monomers (Phase I: A beta(42) + extract co-incubation); (ii) the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) dis-aggregation of pre-formedfibrils (Phase III: aqueous extract added to matured fibrils and incubated for 9 days). The aggregation kinetics was monitored using thioflavin-T assay and transmission electron microscopy (TEM). The results showed that C. crista aqueous extract could able to inhibit the A beta(42) aggregation from monomers and oligomers and also able todis-aggregate the pre-formed fibrils. The study provides an insight on finding new natural products for AD therapeutics. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the oxide ceramics have widely been investigated for their biocompatibility, non-oxide ceramics, such as SiAlON and SiC are yet to be explored in detail. Lack of understanding of the biocompatibility restricts the use of these ceramics in clinical trials. It is hence, essential to carry out proper and thorough study to assess cell adhesion, cytocompatibility and cell viability on the non-oxide ceramics for the potential applications. In this perspective, the present research work reports the cytocompatibility of gas pressure sintered SiAlON monolith and SiAlON-SiC composites with varying amount of SIC, using connective tissue cells (L929) and bone cells (Saos-2). The quantification of cell viability using MTT assay reveals the non-cytotoxic response. The cell viability has been found to be cell type dependent. An attempt has been made to discuss the cytocompatibility of the developed composites in the light of SiC content and type of sinter additives. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chiral sensing property of helicin (the derivative of natural product obtained by partial oxidation of salicin, extracted from willow tree (Salix helix)) is reported. The use of helicin as a chiral derivatizing agent for the discrimination of amines and amino alcohols is convincingly established using H-1 NMR spectroscopy. The large chemical shift separation achieved between the discriminated peaks facilitated the accurate quantification of enantiomeric composition. The consistent trend observed in the shifting of imine proton peak (Delta delta) of helicin in all the derivatized molecules might aid the determination of spatial configuration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface of mild steel was modified by generating cetyl-trimethyl ammonium bromide (CTAB) self-assembled monolayer (SAM) to enhance the corrosion resistance property. The experimental parameters (pH and time) for SAM generation were optimized. The modified surface was characterized by infrared reflection absorption spectroscopy (IRRAS) and contact angle measurements. The SAM generated in 1 mM solution of CTAB at pH 2.5 for 2 h showed a regimented monolayer. Polarization and electrochemical impedance spectroscopic (EIS) studies demonstrated a significant enhancement in the corrosion resistance property of the SAM protected steel in both 1 M HCl and 3.5% NaCl solution. The CTAB SAM surface substantially reduced the corrosion rate by approximately 4 times in 1 M HCl and 1.5 times in 3.5% NaCl media as compared to bare steel. Scanning electron microscopy images confirmed the formation of lesser amounts of corrosion products on the SAM protected surface. (C) 2015 Elsevier B.V. All rights reserved.