3 resultados para PROJECT EVALUATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the results of a study using satellite remote sensing techniques to evaluate the current status of canal system performance in terms of the spatial and temporal mismatch between water requirements and water releases within the command area The Rajolibanda Diversion Scheme(RDS)is the only operational major irrigation project in the drought prone district of Mahaboobnagar in Andra Pradesh. It is an inter-state project between Karnataka and Andra Pradesh which comprises of an anicut constructed in Karnataka in 1995 across river Thungabhdra and a 143 km long left bank main canel. The initial 42.6 km of the canel lies in Karnataka consisting of 12 distributaries and servers and serves an localised ayacut of 2739ha. In Andra Pradesh, the latter stretch of the main canal consists of distributaries 12A to 40, is localised to serve an ayacut of 35,410 ha.of which 14,215 ha during kharif season,19,332 ha, during rabi season and 1,863 ha.of perennial crops

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a comprehensive evaluation of five widely used multisatellite precipitation estimates (MPEs) against 1 degrees x 1 degrees gridded rain gauge data set as ground truth over India. One decade observations are used to assess the performance of various MPEs (Climate Prediction Center (CPC)-South Asia data set, CPC Morphing Technique (CMORPH), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks, Tropical Rainfall Measuring Mission's Multisatellite Precipitation Analysis (TMPA-3B42), and Global Precipitation Climatology Project). All MPEs have high detection skills of rain with larger probability of detection (POD) and smaller ``missing'' values. However, the detection sensitivity differs from one product (and also one region) to the other. While the CMORPH has the lowest sensitivity of detecting rain, CPC shows highest sensitivity and often overdetects rain, as evidenced by large POD and false alarm ratio and small missing values. All MPEs show higher rain sensitivity over eastern India than western India. These differential sensitivities are found to alter the biases in rain amount differently. All MPEs show similar spatial patterns of seasonal rain bias and root-mean-square error, but their spatial variability across India is complex and pronounced. The MPEs overestimate the rainfall over the dry regions (northwest and southeast India) and severely underestimate over mountainous regions (west coast and northeast India), whereas the bias is relatively small over the core monsoon zone. Higher occurrence of virga rain due to subcloud evaporation and possible missing of small-scale convective events by gauges over the dry regions are the main reasons for the observed overestimation of rain by MPEs. The decomposed components of total bias show that the major part of overestimation is due to false precipitation. The severe underestimation of rain along the west coast is attributed to the predominant occurrence of shallow rain and underestimation of moderate to heavy rain by MPEs. The decomposed components suggest that the missed precipitation and hit bias are the leading error sources for the total bias along the west coast. All evaluation metrics are found to be nearly equal in two contrasting monsoon seasons (southwest and northeast), indicating that the performance of MPEs does not change with the season, at least over southeast India. Among various MPEs, the performance of TMPA is found to be better than others, as it reproduced most of the spatial variability exhibited by the reference.