10 resultados para POSICIONAMIENTO LABORAL – EGRESADOS - 2011
em Indian Institute of Science - Bangalore - Índia
Resumo:
The 18 September 2011, magnitude Mw 6.9 earthquake close to the Nepal-Sikkim border caused significant damage due to ground shaking and caused several landslides. Observations from the post-earthquake surveys in the affected areas within Sikkim suggest that the poorly engineered, multistoried structures were relatively more impacted. Those located on alluvial terraces were also affected. The morphology of the region is prone to landslides and the possibility for their increased intensity during the forthcoming monsoon need to be considered seriously. From the seismotectonic perspective, the mid-crustal focal depth of the North Sikkim earthquake reflects the ongoing deformation of the subducting Indian plate.
Resumo:
The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of quasi-periodic oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods: photon index (Gamma)-QPO frequency (nu) correlation, QPO frequency (nu)-time (day) evolution, and broadband spectral modeling based on two-component advective flow (TCAF). We provide a combined mass estimate for the source using a naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M-circle dot-13.7 M-circle dot. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M-circle dot-15.6 M-circle dot with 90% confidence. We discuss the possible implications of our findings in the context of two-component accretion flow.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.