295 resultados para POROUS MATERIALS
em Indian Institute of Science - Bangalore - Índia
Resumo:
The knowledge of adsorption characteristics of activated carbon (porous material) in the temperature range from 5 to 20 K is essential when used in cryosorption pumps for nuclear fusion applications. However, such experimental data are very scarce in the literature, especially below 77 K. So, an experimental system is designed and fabricated to measure the adsorption characteristics of porous materials under variable cryogenic temperatures (from 5 K to 100 K). This is based on the commercially available micropore-analyser coupled to a closed helium cycle two-stage Gifford McMahon (GM) Cryocooler, which allows the sample to be cooled to 4.2 K. The sample port is coupled to the Cryocooler through a heat switch, which isolates this port from the cold head of the Cryocooler. By this, the sample temperature can now be varied without affecting the Cryocooler. The setup enables adsorption studies in the pressure range from atmospheric down to 10(-4) Pa. The paper describes the details of the experimental setup and presents the results of adsorption studies at 77 K for activated carbon with nitrogen as adsorbate. The system integration is now completed to enable adsorption studies at 4.2 K.
Resumo:
Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.
Resumo:
Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
The esterification of stearic acid with p-cresol using modified Indian bentonite clay catalysts has been reported. The reaction was studied over exchanged clays, acid activated clays, exchanged acid activated clays, aluminium pillared clay, aluminium pillared acid activated clay, molecular sieve Al-MCM-41, zeolite H beta, ZrO2, S-ZrO2, p-TSA, montmorillonite K10, and montmorillonite KSF in o-xylene for 6 h. The catalysts were characterized by X-ray diffraction and surface area measurements. The acidity was determined by n-butylamine back-titration method and DRIFTS after pyridine adsorption. Acid activated Indian bentonite (AAIB) was found to be a better catalyst compared to other catalysts in the esterification of stearic acid with p-cresol.
Resumo:
Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.
Resumo:
Effective “hydrodynamic” radii governing infiltration kinetics of reactive Al-Mg melts into alumina preforms were found to be three orders of magnitude smaller than the average pore size of the packed bed and also smaller compared with the kinetics for a nonreactive system. A sinusoidal capillary model was developed to predict flow kinetics within the packed bed. For the reactive system, two factors were ascribed for additional melt retardation: (1) different intrinsic wettabilities of the two liquids on alumina, thereby leading to significantly different “effective” local contact angles; and (2) local solute depletion from the meniscus, which was incorporated as a time-dependent contact angle.
Resumo:
We present a simple template-free method for the synthesis of interconnected hierarchical porous palladium nanostructures by controlling the aggregation of nanoparticles in organic media. The interaction between the nanoparticles is tuned by varying the dielectric constant of the medium consistent with DLVO calculations. The reaction products range from discrete nanoparticles to compact porous clusters with large specific surface areas. The nanoclusters exhibit hierarchical porosity and are found to exhibit excellent activity towards the reduction of 4-nitrophenol into 4-aminophenol and hydrogen oxidation. The method opens up possibilities for synthesizing porous clusters of other functional inorganics in organic media.
Resumo:
In this paper we discuss the different models proposed to explain the visible luminescence in porous silicon (PS). We review our recent photoluminescence and Raman studies on PS as a function of different preparation conditions and isochronal thermal annealing. Our results can be explained by a hybrid model which incorporates both nanostructures for quantum confinement and silicon complexes (such as SiHx, and siloxene) and defects at Si/SiO2, interfaces as luminescent centres.
Resumo:
A simple, cost-effective and environment-friendly pathway for preparing highly porous matrix of giant dielectric material CaCu3Ti4O12 (CCTO) through combustion of a completely aqueous precursor solution is presented. The pathway yields phase-pure and impurity-less CCTO ceramic at an ultra-low temperature (700 degrees C) and is better than traditional solid-state reaction schemes which fail to produce pure phase at as high temperature as 1000 degrees C (Li, Schwartz, Phys. Rev. B 75, 012104). The porous ceramic matrix on grinding produced CCTO powder having particle size in submicron order with an average size 300 nm. On sintering at 1050 degrees C for 5 h the powder shows high dielectric constants (>10(4) at all frequencies from 100 Hz to 100 kHz) and low loss (with 0.05 as the lowest value) which is suitable for device applications. The reaction pathway is expected to be extended to prepare other multifunctional complex perovskite materials. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.
Resumo:
Abstract | The importance of well-defined inorganic porous nanostructured materials in the context of biotechnological applications such as drug delivery and biomolecular sensing is reviewed here in detail. Under optimized conditions, the confinement of “bio”-relevant molecules such as pharmaceutical drugs, enzymes or proteins inside such inorganic nanostructures may be remarkably beneficial leading to enhanced molecular stability, activity and performance. From the point of view of basic research, molecular confinement inside nanostructures poses several formidable and intriguing problems of statistical mechanics at the mesoscopic scale. The theoretical comprehension of such non-trivial issues will not only aid in the interpretation of observed phenomena but also help in designing better inorganic nanostructured materials for biotechnological applications.