88 resultados para POLAR-SOLVENTS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Ultrafast solvation dynamics in three nonassociated polar solvents, namely, acetonitrile, dimethyl sulfoxide, and acetone, have been studied by using the molecular hydrodynamic theory. For solvation in acetonitrile, the solvent memory function required for this study has been obtained from recent dielectric relaxation measurements of Venabales and Schuttenmaer; earlier theoretical studies used only the Kerr relaxation data. As the latter provides only an indirect information regarding the polar dynamical response of the dipolar liquid, it fails to provide a fully quantitative description of the solvation time correlation function, S(t). The present study with full dielectric data, on the other hand, gives excellent agreement with the experimental results. The theory shows that the ultrafast part of the solvation dynamics originates almost entirely from the high-frequency component of dielectric relaxation (with time constant 0.177 ps), although the latter represents only a small part of the latter. For DMSO and acetone, however, the present theory predicts a decay slower than the experimental observation. It is proposed that for these two solvents specific chromophore-solvent interactions might be responsible for the-large discrepancy. On the basis of the theory, two experimental studies have also been proposed.
Resumo:
numerical study of the free energy gap (FEG) dependence of the electron-transfer rate in polar solvents is presented. This study is based on the generalized multidimensional hybrid model, which not only includes the solvent polarization and the molecular vibration modes, but also the biphasic polar response of the solvent. The free energy gap dependence is found to be sensitive to several factors, including the solvent relaxation rate, the electronic coupling between the surfaces, the frequency of the high-frequency quantum vibrational mode, and the magnitude of the solvent reorganization energy. It is shown that in some cases solvent relaxation can play an important role even in the Marcus normal regime. The minimal hybrid model involves a large number of parameters, giving rise to a diverse non-Marcus FEG behavior which is often determined collectively by these parameters. The model gives the linear free energy gap dependence of the logarithmic rate over a substantial range of FEG, spanning from the normal to the inverted regime. However, even for favorable values of the relevant parameters, a linear free energy gap dependence of the rate could be obtained only over a range of 5000-6000 cm(-1) (compared to the experimentally observed range of 10000 cm(-1) reported by Benniston et al.). The present work suggests several extensions/generalizations of the hybrid model which might be necessary to fully understand the observed free energy gap dependence.
Influence of Solvent on Photoinduced Electron-Transfer Reaction: Time-Resolved Resonance Raman Study
Resumo:
Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.
Resumo:
Complexation of valinomycin (VM) with the divalent cation Ca2+ in a lipophilic solvent, acetonitrile (CH3-CN), has been studied by using circular dichroism and proton and carbon- 13 nuclear magnetic resonance (‘H NMR and I3C NMR). From analyses of the spectral data, it is concluded that VM forms a 2:l (peptideion-peptide) sandwich complex with Ca2+, at low concentration of VM. At moderate conocentrations of the salt, in addition to the sandwich complex, an equimolar (1:l) complex different from those observed for potassium and sodium is also observed. At very large concentrations of the calcium salt, the data suggested a complex with a conformation similar to that of the free VM in polar solvents. Possible conformations for the sandwich and the equimolar VM-calcium complexes are proposed.
Resumo:
In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.
Resumo:
The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se center dot center dot center dot N interactions is evaluated for organoselenium compounds having N,N-dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2-(dime)C6H4SeX (1a-g), 2-(oxa)C6H4SeX (2a-g), 2- (py)C6H4SeX (3-ag); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6-31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se center dot center dot center dot N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se center dot center dot center dot N interaction is predominantly covalent and involves nN ->sigma*(Se-X) orbital interaction. In the three series of compounds, the strength of the Se center dot center dot center dot N interaction decreases in the order 3>2>1 for a particular X, and it decreases in the order Cl > Br > OH>SPh approximate to CN approximate to SePh>CH3 for all the three series 1-3. However, further analyses suggest that the differences in strength of Se center dot center dot center dot N interaction in 1-3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1, 2 and 3, and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se center dot center dot center dot N interaction. It is also observed that Se center dot center dot center dot N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter r(Se center dot center dot center dot N) and higher E-Se center dot center dot center dot N values in CHCl3 compared to those observed in the gas phase.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
The circular dichroism studies on calcium ionophore, A23187, incorporated in Dipalmitoyl phosphatidyl choline (DPPC) vesicle showed interesting time dependent changes in the CD spectra. Analysis of the data indicated the possible aggregation of the observed dimeric structure of this molecule in non-polar solvents into a stacked dimeric pore in the phospholipid vesicle.
Resumo:
The circular dichroism spectra of four 0-turn model peptides, Z-Aib-Pro-Aib-Pro- OMe (l), Piv-Pro-Aib-NHMe (2), Piv-Pro-D-Ala-NHMe (3) and Piv-Pro-Val-NHMe (4) have been examined under a wide range of solvent conditions, using methanol, hexafluoroisopropanol and cyclohexane. Type I and Type I1 0-turns have been observed for peptides 1 and 2 respectively, in the solid state, while the Pro-D-Ala sequence adopts a Type I1 Sturn in a related peptide crystal structure. A class C spectrum is observed for 1 in various solvents, suggesting a variant of a Type I(II1) structure. The Type I1 f3-turn is characterized by a CD spectrum having two positive CD bands at - 230 nm and - 202 nm, a feature observed in Piv-Pro- D-Ala-NHMe in cyclohexane and methanol and for Piv-Pro-Aib-NHMe in methanol. Peptide 2 exhibits solvent dependent CD spectra, which may be rationalized by considering Type 11, I11 and V reverse turn structures. Piv-Pro- Val-NHMe adopts nonaturn structures in polar solvents, but exhibits a class B spectrum in cyclohexane suggesting a population of Type I &turns.
Resumo:
Systematic ab initio molecular orbital studies of the conformational equilibria and vibrational spectra of dipropionamide using the basis sets 6-31g(d) and 6-31++G(d,p) have been carried out. The vibrational spectra of dipropionamide have been satisfactorily interpreted taking into account the agreement between the calculated frequencies, infrared and Raman band intensities and the shifts in the spectra of deuterated molecules with those observed. The previous assignments of most of the vibrational bands are well confirmed, a few bands need reassignment, however. The solvent effects were investigated by self-consistent reaction field theory using dipole and self-consistent isodensity polarized continuum model methods. The introduction of a dielectric medium has only a marginal effect on the conformational equilibria and vibrational spectra. However, the calculated changes in geometry and vibrational spectra on going from the gas phase to the solution phase are in accord with the increasing weight of the dipolar resonance structure in polar solvents. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Spontaneous halide ejection from a three-coordinate Lewis acid has been shown to offer a remarkable new route to cationic metal complexes featuring a linear, multiply bonded boron-donor Ligand. The exploitation of electron-rich [CpM(PR3)(2)] fragments within boryl systems of the type LnMB(hal)NR2 leads to the spontaneous formation in polar solvents of chemically robust borylene complexes, [LnM(BNR2)](+), with exceptionally low electrophilicity and short M-B bonds. This is reflected by M-B distances (ca. 1.80 angstrom for FeB systems) which are more akin to alkyl-/aryl-substituted borylene complexes and, perhaps most strikingly, by the very low exothermicity associated with the binding of pyridine to the two-coordinate boron center (Delta H = -7.4 kcal mol(-1), cf. -40.7 kcal mol(-1) for BCl3). Despite the strong pi electron release from the metal fragment implied by this suppressed reactivity and by such short M-B bonds, the barrier to rotation about the Fe=B bond in the unsymmetrical variant [CpFe(dmpe)(BN{C6H4OMe-4}Me)](+) is found to be very small (ca. 2.9 kcal mol(-1)). This apparent contradiction is rationalized by the orthogonal orientations of the HOMO and HOMO-2 orbitals of the [CpML2](+) fragment, which mean that the M-B pi interaction does not fall to zero even in the highest energy conformation.
Resumo:
Joint experimental and theoretical work is presented on two quadrupolar D-pi-A-pi-D chromophores characterized by the same bulky donor (D) group and two different central cores. The first chromophore, a newly synthesized species with a malononitrile-based acceptor (A) group, has a V-shaped structure that makes its absorption spectrum very broad, covering most of the visible region. The second chromophore has a squaraine-based core and therefore a linear structure, as also evinced from its absorption spectra. Both chromophores show an anomalous red shift of the absorption band upon increasing solvent polarity, a feature that is ascribed to the large, bulky structure of the moleCules. For these molecules, the basic description of polar solvation in terms of a uniform reaction field fails. Indeed, a simple extension of the model to account for two independent reaction fields associated with the two molecular arms quantitatively reproduces the observed linear absorption and fluorescence as well as fluorescence anisotropy spectra, fully rationalizing their nontrivial dependence on solvent polarity. The model derived from the analysis of linear spectra is adopted to predict nonlinear spectra and specifically hyper-Rayleigh scattering and two-photon absorption spectra. In polar solvents, the V-shaped chromophore is predicted to have a large HRS response in a wide spectral region (approximately 600-1300 nm). Anomalously large and largely solvent-dependent HRS responses for the linear chromophores are ascribed to symmetry lowering induced by polar solvation and amplified in this bulky system by the presence of two reaction fields.
Resumo:
Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.
Resumo:
Two new dicyanovinyl (DCV) functionalized triarylboranes (Mes(2)B-pi-spacer-DCV, for 1: pi-spacer = C6H4, for 2: pi-spacer = 2,3,5,6-tetramethyl-phenyl) are reported. The molecular structures of 1 and 2 are similar except for the spacer which connects the boryl and DCV units. This small structural perturbation induces drastic changes in the optical properties of 1 and 2. Compound 2 shows weak dual fluorescence emission in nonpolar solvents and a stronger emission in polar solvents. Compound 1 is weakly fluorescent in polar environments but shows an intense single luminescence peak in less polar environments. Compound 1 exhibits a turn-off fluorescence response for both fluoride and cyanide: in contrast, 2 shows a turn on fluorescence response for both anions with different fluorescence signatures. The NMR titration studies reveal that for compound 2, fluoride binds to the boron centre and cyanide binds to the DCV unit. For compound 1, the fluoride ion binds to the boron center, whereas the CN- binds to both the Ar3B and DCV units.
Resumo:
The study discusses an approach that allows simultaneous determination of boronic acid and its anhydride without the need for tedious physical separation of the mixture. The assignment of the proton spectra of monomer, dimer and trimer was achieved by combining utility of 1D and 2D experimental techniques including 2D DOSY. The differential intensities of NMR peaks and supplementary resonances were detected in low polar solvents, such as, chloroform, toluene and in a non-polar solvent benzene. A fascinating phenomenon is observed at lower temperature where there is a formation of aryl boronic acid with the disappearance of boraxine formation. (C) 2015 Elsevier B.V. All rights reserved.