9 resultados para PMSG

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative induction of FSH and LH receptors in the granulosa cells of immature rat ovary by pregnant mare serum gonadotropin (PMSG) has been studied. A single injection of PMSG (15 IU) brought about a 3- and 12-fold increase in FSH and LH receptor concentration,respectively, in the granulosa cells. Maximal concentration was reached by 72 h but the receptor levels showed a sharp decline during the next 24–48 h. The kinetic properties of the newly formed FSH receptors were indistinguishable from the pre-existing ones. The induced FSH receptors were functional as demonstrated by an increase in the in vitro responsiveness of the cells to exogenous FSH in terms of progesterone production. Treatment of immature rats with cyanoketone, an inhibitor of Δ5,3β-hydroxysteroid dehydrogenase, prior to PMSG injection effectively reduced the PMSG-stimulated increase in the serum estradiol, uterine weight and LH receptors but had no effect on the FSH receptor induction. The ability of PMSG to induce gonadotropin receptors can be arrested at any given time by injecting its antibody, thereby suggesting a continuous need for the hormonal inducer. Estrogen in the absence of the primary inducer was unable to maintain the induced LH and FSH receptor concentration. Inhibition of prostaglandin synthesis using indomethacin also had no effect on either the induction or degradation of gonadotropin receptors. Administration of PMSG antiserum, 48 h after PMSG injection, brought about a rapid decline in the induced receptors over the next 24 h, with a rate constant and \iota 1/2 of 0.078 h−1 and 8.9 h for FSH receptors and 0.086 h−1 and 8.0 h for the LH receptors, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of different LH-like hormones, such as hCG, PMSG/equine (e) CG, ovine (o) LH, eLH, and rat (r) LH, to bind to and stimulate steroidogenesis in two types of rat gonadal cells was studied under the same experimental conditions. In both Leydig and granulosa cells, the maximal steroidogenic responses elicited by optimal doses of different LHs present during a 2-h incubation were comparable. However, if the cells were exposed to the different LHs for a brief period and then subjected to interference with hormone action by removing the unbound hormone from the medium by washing or adding specific antisera, differences were observed in the amount of steroid produced during subsequent incubation in hormone-free medium. Thus, in the case of hCG, either of these procedures carried out at 15 or 30 min of incubation had little inhibitory effect on the amount of steroid produced at 2 h, the latter being similar to that produced by cells incubated in the continued presence of hCG for 2 h. With eCG and rLH, the effect was dramatic, in that there was a total inhibition of subsequent steroidogenic response. In cells exposed to eLH and oLH, inhibition of subsequent steroidogenesis due to either removal of the free-hormone or addition of specific antisera at 15 or 30 min was only partial. Although all of the antisera used were equally effective in inhibiting the steroidogenic response to respective gonadotropins when added along with hormones at the beginning of incubation, differences were observed in the degree of inhibition of this response when the same antisera were added at later times of incubation. Thus, when antisera were added 60 min after the hormone, the inhibition of steroidogenesis was total (100%) for eCG, partial (10–40%) for eLH and oLH, and totally lacking in cells treated with hCG. From this, it appears that hCG bound to the receptor probably becomes unavailable for binding to its antibody with time, while in the case of eCG and other LHs used, the antibody can still inhibit the biological activity of the hormone. Studies with 125I-labeled hormones further supported the conclusion that hCG differs from all other LHs in being most tightly bound and, hence, least dissociable, while eCG and rLH dissociate most readily; oLH and eLH can be placed in between these hormones in the extent of their dissociability. (Endocrinology 116: 597–603,1985)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ovary of the immature female rat is comprised of primary and medium-sized preantral follicles. Upon stimulation with FSH or PMSG, the cathepsin-D activity, a representative lysosomal enzyme of granulosa cells, is reduced by 50% (P < 0.01). 17β-Estradiol at the doses tried was unable to mimic this effect. Blockade of steroidogenesis with cyanoketone also had no effect on the cathepsin-D activity of isolated granulosa cells. Dihydrotestosterone (DHT), however, at a dose of 1 mg/rat was able to inhibit PMSG's tropic action. It brought about an increase in cathepsin-D activity and reduction in steroidogenic activity of isolated granulosa cells. The atretogenic activity of DHT could be relieved by supplementation with exogenous FSH. DHT was observed to significantly reduce (P < 0.01) endogenous FSH and LH levels within 12–18 h of its injection suggesting that its atretic effect was due to its action at the pituitary rather than the gonad. In addition to the above the ability of 15 IU of PMSG to reduce cathepsin-D activity of granulosa cells was also significantly reduced (P < 0.01) if endogenous FSH was neutralized by a specific FSH antiserum. The present study suggests that as far as small and medium-sized primary and preantral follicles are concerned, FSH lack is the essential signal for onset of atresia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative rôles of FSH and LH in ovulation induction in immature and adult cycling rats and hamsters have been evaluated. Both heterologous purified pituitary hormones and homologous crude pituitary extracts have been used as ovulatory stimuli in immature animals primed with PMSG. Well-characterized FSH and LH antisera have been used in the above model systems to achieve specific neutralization of FSH and LH. The present study revealed that LH is the physiological trigger needed for induction of ovulation in both rats and hamsters and FSH cannot, by itself, induce ovulation in the total absence of LH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Administration of human chorionic gonadotrophin (HCG) or ovine LH to immature rats primed with pregnant mare serum gonadotrophin (PMSG) stimulated the rate of synthesis of polyadenylic acid (poly A)-rich RNA in the ovaries. The rate of total RNA synthesis was not affected significantly by hormone treatment, whereas protein synthesis was enhanced. The increase in the rate of synthesis of poly(A)-rich RNA in the ovaries could be inferred as induction of messenger RNA synthesis after the hormone treatment. The poly(A)-rich nature of the isolated RNA was established by oligo(dT)–cellulose chromatography, binding to Millipore filter disks and hydridization with [3H]polyuridylic acid. The level of cyclic AMP in the ovaries of such rats was also raised after administration of LH, the increase coincided with the increase in the rate of synthesis of poly(A)-rich RNA. The implications of these results are discussed in the light of the biochemical basis of luteinization and the action of LH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preovulatory follicular atresia was studied using pregnant mare serum gonadotropin (PMSG)-primed rats (15 IU/rat) which were deprived of hormonal support either by allowing the metabolic clearance of the PMSG or by injecting a specific PMSG antiserum (PMSG a/s). Atresia was monitored by an increase in lysosomal cathepsin-D activity and a decrease in the receptor activity of the granulosa cells (GC) isolated from the preovulatory follicles. It was shown that the increase in lysosomal activity and the decrease in receptor activity seen at 96 h after PMSG (or PMSG plus PMSG a/s) could be arrested both by follicle stimulating hormone (FSH) and luteinizing hormone (LH). Injection of cyanoketone or clomiphene citrate together with FSH/LH prevented this 'rescue' suggesting a role for estrogens in the regulation of atresia. Although the administration of estradiol-17 beta (20 micrograms/rat) together with PMSG a/s could show a 'rescue effect' in terms of reduction in cathepsin-D activity the gonadotropin receptor activities of these granulosa cells were not restored. The injection of dihydrotestosterone (DHT) to 48 h PMSG-primed rats induced atresia as noted by an increase in cathepsin-D activity. However, the exogenous administration of FSH along with DHT prevented this atretic effect suggesting that DHT is not having a direct effect on atresia. Determination of androgen: estrogen content of the granulosa cells and an analysis of the individual profile of androgen and estrogen revealed that the increase in cathepsin-D activity could be correlated only with the decrease in GC estrogen content. This along with the observation that GC showed a loss of estrogen synthesis well before the increase in cathepsin-D activity strongly points out that the lack of estrogen rather than an increase in androgen is the principle factor responsible for the atresia of preovulatory follicles in the rat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gonadotropic hormones PMSG (15 IU/rat), FSH (3 mgrg/rat), LH (9 mgrg/rat) and hCG (3 mgrg/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported the presence of a 80 kDa polypeptide in porcine follicular fluid that inhibited the binding of 125I-radiolabelled hFSH as well as hCG to the rat ovarian gonadotropin receptors. In the present study, the biological activity of the receptor binding inhibitor is determined using an in vitro bioassay procedure. Granulosa cells isolated from PMSG primed immature rat ovaries respond to exogenously added gonadotropins in terms of progesterone production. Addition of fractions containing the gonadotropin receptor binding inhibitory activity inhibited progesterone production stimulated by the gonadotropins in a dose-dependent fashion. The receptor binding inhibitory activity was also capable of inhibiting progesterone production stimulated by PMSG, which has both FSH- and LH-like activities in rats. In contrast, progesterone production stimulated by dbcAMP was not inhibited by the receptor binding inhibitor. This result indicates that the site of action of the inhibitor is proximal to the formation of the cAMP. The above observations point out to a possible role for this factor in modulating gonadotropin activity at the ovarian level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.