188 resultados para PL spectra
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have studied the as grown and annealed CdZnTe (Zn similar to 4 %) crystals for the assessment of their crystalline quality. As grown crystals suffer from tellurium precipitates and cadmium vacancies, which are inherent, due to retrograde solid solubility curve in the phase diagram. This is reflected in the Fourier transform infrared (FTIR) spectra over the 400 - 4500 cm(-1) range by a strong absorption around 2661 cm(-1) which corresponds to the band gap of tellurium confirming their presence, where-as a monotonic decrease in the transmission with the decrease in wave number indicates the presence of cadmium vacancies. Obviously the presence of Cd vacancies lead to the formation of tellurium precipitates confirming their presence. Annealed samples under cadmium + zinc ambient at 650 degrees C for 6 hours show an improvement in the transmission over the same range. This can be attributed to thermo-migration of tellurium precipitates and hence bonding with Cd or Zn to form CdZnTe. This is further supported by the reduced full width at half maximum in the X-ray diffraction rocking curve of these CdZnTe crystals. Cadmium annealing although can passivate Cd vacancy related defects and reduce the Te precipitates, as is observed in our low temperature Photoluminescence (PL) spectra, alone may not be sufficient possibly due to the loss of Zn. Vacuum annealing at 650 degrees C for 6 hours further deteriorated the material quality as is reflected in the low temperature PL spectra by the introduction of a new defect band around 0.85 eV and reduced IR transmission.
Resumo:
Body-centered-tetragonal (BCT) ZnS nanocrystals have been synthesized, for the first time to the best of our knowledge, by using the chemical coprecipitation method at higher synthesis temperatures of 65 and 95 degrees C. It is confirmed from X-ray diffraction (XRD) studies that in the high-temperature-synthesized samples, cubic and BCT phases coexist, in contrast to the room-temperature-synthesized sample, which consists of only cubic phase with sizes of the particles lying between 2 and 3 nm. The sizes of BCT phase nanocrystals are bigger than those of cubic phase of ZnS. The presence of BCT phase of ZnS in the samples is increased from 40 to 90% when the temperature of synthesis is increased from 65 to 95 degrees C. The nanocrystalline nature and UV-Vis absorption characteristics of the prepared samples have been studied with a transmission electron microscope (TEM) and a UV-Visible pectrophotometer, respectively. The room-temperature-synthesized ZnS sample shows photoluminescence (PL) emission in the blue region with multiple peaks, whereas the high-temperature-synthesized samples show PL emissions in the visible region. The Gaussian fittings of the measured PL spectra shows that three PL peaks at 429, 477, and 525 nm are appeared in the 65 degrees C sample and two peaks at 491 and 540 nm appear in the 95 degrees C sample with the enhanced PL intensity of the green peak at 540 nm. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar+ (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Dimethylzine (DMZn) was used as a p-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium and arsine (AsH3) as source materials, The hole carrier concentrations and zinc (Zn) incorporation efficiency are studied by using the Hall effect, electrochemical capacitance voltage profiler and photoluminescence (PL) spectroscopy, The influence of growth parameters such as DMZn mole fraction, growth temperature, and AsH, mole fraction on the Zn incorporation have been studied. The hole concentration increases with increasing DMZn and AsH3 mole fraction and decreases with increasing growth temperature. This can be explained by vacancy control model. The PL experiments were carried out as a function of hole concentration (10(17)-1.5 x 10(20) cm(-3)). The main peak shifted to lower energy and the full width at half maximum (FWHM) increases with increasing hole concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(p)(eV) = 1.15 x 10(-8)p(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Zn doped GaAs as a function of hole concentration. The value of Delta E-g(eV) = -2.75 x 10(-8)p(1/3), indicates a significant band gap shrinkage at high doping levels, These relations are considered to provide a useful tool to determine the hole concentration in Zn doped GaAs by low temperature PL measurement. The hole concentration increases with increasing AsH3 mole fraction and the main peak is shifted to a lower energy side. This can be explained also by the vacancy control model. As the hole concentration is increased above 3.8 x 10(18) cm(-3), a shoulder peak separated from the main peak was observed in the PL spectra and disappears at higher concentrations. (C) 1997 American Institute of Physics.
Resumo:
The photochromic, electrochromic and x-ray irradiation damages (commonly called the gray tracks) produced in KTiOPO4 single crystals have been studied using photoluminescence (PL) spectroscopy. Gray tracks were produced in this material by exposure to high laser powers (similar to MW/cm(2)), application of electric fields (similar to kV), and exposure to x rays (30 kV). The PL spectra recorded for such gray tracked samples at 4.2 K, exhibited a luminescence band in the 1-1.8 eV range with a peak at 1.41 eV. Temperature and excitation intensity dependence of PL peaks were carried out to probe the exact nature of the broad emission band in the gray tracked samples. The observed photoluminescence is attributed to transitions in the Ti3+ levels, created on irradiation. The microscopic effects produced in the crystal by electric field, optical field, and x rays are similar, as can be concluded from the similarity of PL spectra as well as their intensity and temperature dependences. (C) 1999 American Institute of Physics. [S0021-8979(99)04512-0].
Resumo:
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of similar to 40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 angstrom, c=5.27563 angstrom and V=47.684 (angstrom)(3)) are found to be greater than that of undoped ZnO (a=3.19993 angstrom, c=5.22546 angstrom and V=46.336 (angstrom)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at similar to 3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to T-4(1) -> (6)A(1) transition of Mn2+ ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to Mn-55 hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn2+ ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (chi) have been evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
GaAs/Ge heterostructures having abrupt interfaces were grown on 2degrees, 6degrees, and 9degrees off-cut Ge substrates and investigated by cross-sectional high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy, photoluminescence spectroscopy and electrochemical capacitance voltage (ECV) profiler. The GaAs films were grown on off-oriented Ge substrates with growth temperature in the range of 600-700degreesC, growth rate of 3-12 mum/hr and a V/III ratio of 29-88. The lattice indexing of HRTEM exhibits an excellent lattice line matching between GaAs and Ge substrate. The PL spectra from GaAs layer on 6degrees off-cut Ge substrate shows the higher excitonic peak compared with 2degrees and 9degrees off-cut Ge substrates. In addition, the luminescence intensity from the GaAs solar cell grown on 6degrees off-cut is higher than on 9degrees off-cut Ge substrates and signifies the potential use of 6degrees off-cut Ge substrate in the GaAs solar cells industry. The ECV profiling shows an abrupt film/substrate interface as well as between various layers of the solar cell structures.
Resumo:
The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.
Resumo:
SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.
Resumo:
Red light emitting cubic Y1.95Eu0.05O3 nanophosphors have been synthesized by a low temperature solution combustion method using ethylene diamine tetra acetic acid (EDTA) as fuel. The systematic studies on the effect of calcination temperature on its structural, photoluminescence (PL), and thermoluminescence (TL) properties were reported. The crystallinity of the samples increases, and the strain is reduced with increasing calcination temperature. SEM micrographs reveal that samples lose their porous nature with an increase in calcination temperature. PL spectra show that the intensity of the red emission (611 nm) is highly dependent on the calcination temperature and is found to be 10 times higher when compared to as-formed samples. The optical band gap (E-g) was found to reduce with an increase of calcination temperature due to reduction of surface defects. The thermoluminescence (TL) intensity was found to be much enhanced in the 1000 degrees C calcined sample. The increase of PL and TL intensity with calcination temperature is attributed to the decrease of the nonradiative recombination probability, which occurs through the elimination of quenching defects. The trap parameters (E, b, s) were estimated from Chen's glow peak shape method and are discussed in detail for their possible usage in dosimetry.
Resumo:
This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.
Resumo:
Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Despite being a particularly good emitter, use of divalent Eu has been seriously limited. This is because severe reducing environments or special hosts are needed during synthesis of divalent Eu containing phosphors. In this work we stabilize Eu in its 2+ state (in CaAl2O4) using an open-air solution combustion reaction. The impact of fuel (F) to oxidizer (O) molar ratios (F/O = 0.5-2.0) on luminescence properties is explored. Chromaticity of Eu:CaAl2O4 depends sensitively on the F/O ratio. In general, higher F/O inhibits Eu3+ and promotes Eu2+ formation, which in turn improves the quality of the blue phosphor. EPR spectra show inhomogeneous broadening effects with the increase in F/O ratio, which suggests that disorder creation is promoted when F/O is increase. This is also confirmed by an increase in emission line width in PL spectra, when F/O is increased. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The photoluminescence (PL) of ZnO is shown to be dependent on the excitation intensity (EI) of the laser, and the substantial shift observed in the band to band transition is attributed to the heating effect. In order to understand this phenomenon in detail, we investigate the EI dependent PL of various ZnO samples systematically from liquid nitrogen (LN) to room temperature by varying the laser power. Some of the samples exhibit substantial red shift in the band to band transition with increasing EI even in LN environment, negligible effect is observed for others. Hence, our results strongly suggest that the EI dependent PL is not a characteristic of all ZnO samples. This indicates that laser-induced heating effect is not the dominant factor that governs the shifts in the PL spectra. Rather, the defect level excitation accounts for such observation. (C) 2014 AIP Publishing LLC.