10 resultados para PHOTODISSOCIATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the Cl-*(P-2(1/2)) production dynamics in the near-UV dissociation of three isomers (cis-, gem-, and trans-) of dichloroethylene using the conventional resonance enhanced multiphoton ionization technique. Substantial amounts of Cl-* are produced in the wavelength range 222-304 nm. The Cl-* quantum yield (phi(*)) i maximum at 304 nm for all the isomers and phi(*)(cis) is markedly higher than phi(*)(gem) and phi(*)(trans) except at 222 nm. Existence of both direct and indirect dissociation pathways at these wavelengths complicates the Cl* production dynamics. The higher value of phi(*)(cis) originates from a large contribution from direct dissociation via the (n, sigma(*)) state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative quantum yields, phi*, for the production of I*(P-2(1/2)) at 266, 280, and similar to 305 nm are reported for a series of primary alkyl iodides using the technique of two-photon laser-induced fluorescence for the detection of I(P-2(3/2)) and I*(P-2(1/2)) atoms. Results are analyzed by invoking the impulsive energy disposal model, which summarizes the dynamics of dissociation as a single parameter. Comparison of our data with those calculated by a more sophisticated time-dependent quantum mechanical model is also made. Near the red edge of the alkyl iodide A band, absorption contribution from the (3)Q(1) state is important and the dynamics near the (3)Q(0)-(1)Q(1) curve-crossing region seem to be influenced by the kinematics of the dissociation process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum yield of I*((2)p(1/2)) production from CH3I photolysis at 236 nm in the gas phase has been measured as 0.69 +/- 0.03. The implication is that direct excitation to the (1)Q(1) excited state is significant at this wavelength. The dynamics of I* formation at other excitation energies covering the entire A-band of absorption of CH3I has been discussed in the light of this measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of I*(P-2(1/2)) formation from CH2ICl dissociation has-been investigated at five different ultraviolet excitation wavelengths, e.g., 222, 236, 266, 280, and similar to304 nm. The quantum yield of I*((2)p(1/2)) production, phi*, has been measured by monitoring nascent I(P-2(3/2)) and I* concentrations using a resonance enhanced multiphoton ionization detection scheme. The measured quantum yield as a function of excitation energy follows the same trend as that of methyl iodide except at 236 run. The photodissociation dynamics of CH2ICl also involves three upper states similar to methyl iodide, and a qualitative correlation diagram has been constructed to account for the observed quantum yield. From the difference in behavior at 236 nm, it appears that the crossing region between the two excited states ((3)Q(0) and (1)Q(1)) is located near the exit valley away from the Franck Condon excitation region. The B- and C-band transitions do not participate in the dynamics, and the perturbation of the methyl iodide states due to Cl-I interaction is relatively weak at the photolysis wavelengths employed in this investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using excited-state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field approach, we study the mechanism of photodissociation in terms of time evolution of structure, kinetic energy, charges and potential energy for the first excited state of hydrogen halides and methyl halides. Although the hydrogen halides and methyl halides are similar in the photodissociation mechanism, their dynamics are slightly different. The presence of the methyl group causes delay in photodissociation as compared to hydrogen halides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Occurrence of the Norrish type I a-cleavage process in some thio compounds has been examined by using the MIND013 method and employing the configuration interaction. Results reveal that where the radiationless process is not efficient, thio compounds can undergo photodissociation into radicals in their lowest triplet and singlet excited states. The activation barriers in all these cases arise from an avoided crossing between two states of different symmetries. The calculations of activation barriers by the CNDO-CI and MINDO-CI procedures reveal that the MINDO-CI method leads to realistic values of the activation energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)pi sigma* excited state with the bound (1)pi pi* excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)pi pi*-(1)pi sigma* and (1)pi sigma*-S-0 conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S-0, (1)pi pi*, (1)pi sigma*) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)pi pi* and (1)pi sigma* states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)sigma/(2)pi electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (nu(16a)) and ring-distortion (nu(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4709608]