148 resultados para PHASE TRANSITIONS INTO ABSORBING STATES (THEORY)
em Indian Institute of Science - Bangalore - Índia
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.
Resumo:
Einstein's gravitational field is non-minimally coupled to a self-interacting scalar field in the presence of radiation. Such a theory can give rise to a phase transition associated with a change of sign of the gravitational “constant”. In our approach, the criterion for stability is formulated in terms of an effective potential, the phase-transition takes place due to temperature dependence of the scalar self-interaction coupling constant.
Resumo:
The two-dimensional,q-state (q>4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model as a testing ground for these theories are discussed.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6, (DSP) and Ca2Pb(C2H5COO)6, (DLP) and Ca2Ba(C2H5COO)6, (DBP), in single crystals and powders, over the temperature range from 300°C to -180°C have been carried out to study the successive phase transitions in these compounds. Spectra have been analyzed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. Across the I-II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurrence of ferroelectricity. The II-III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. Similarities and dissimilarities of the ESR spectra of DLP, DSP and DBP are discussed in relation to the phase transitions.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6 (DSP), Ca2Pb(C2H5COO)6 (DLP) and Ca2Ba(C2H5COO)6 (DBP), in single crystals and powders, over the temperature range from 200°C to -180°C have been carried out to study the successive phase transitions in these compounds. (DSP: [Tetragonal] ← 8.5°C → [tetragonal, ferroelectric] [tetragonal] ← -169°C → [monoclinic, ferroelectric]; DLP : [tetragonal] ← 60°C → [tetragonal, ferroelectric] ← -71.5°C → [monoclinic, ferroelectric]; [Cubic] ← -6°C → [orthorhombic] ← -75°C → [?]). Spectra have been analysed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. In DSP and DLP across the I ↔ II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurence of ferroelectricity. The II ↔ III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. In DBP, the -6°C transition leads to (i) a doubling of both physically and chemically inequivalent sites (ii) a small (150 G at -6°C to 170 G at -8°C), but abrupt change in the magnitude of the zero-field splitting tensor D, and (iii) displacements of the orientations of the D tensors. Results are interpreted in terms of alternate rotations of the oxygen octahedra, showing participation of the carboxyl oxygens in the transition. No drastic changes in the parameters occur across the -75°C transition consistent with its second order nature. Similarities and dissimilarities of the ESR spectra of the three compounds in relation to the phase transitions, are discussed.
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.
Resumo:
We report high-pressure Raman, infrared (IR), and optical-absorption spectra of alpha-ZrMo2O8 (trigonal) up to 38 GPa at room temperature. The spectroscopic studies are consistent with diffraction results that show that alpha-ZrMo2O8 transforms into delta-ZrMo2O8 (monoclinic) at about 1 GPa and the delta phase converts to the epsilon phase (trielinic) at about 2.0 GPa. Optical-absorption measurements give an estimate of the band gap of about 0.6 eV at the lowest pressure. Band-gap changes with pressure are confirmed with visual observations. ZrMo2O8 changes from transparent at 5 GPa to yellow at 10 GPa, red at 18 GPa, and at about 30 GPa it becomes opaque.
Resumo:
Internal vibration modes of bis-(alkylammonium) tetrachlorometallates(II) and the corresponding alkylammonium chlorides have been studied through their phase transitions using infrared spectroscopy. The studies show that the vibrational states of alkylammonium ions change markedly through the phase transitions. Spectra of the analogous tetrabromometallates and alkylammonium bromides also confirm this behaviour. There is appreciable motion of the alkylammonium ions in the high-temperature phases; thus, CH3NH+3 ions are essentially undistorted in these phases. The low-temperature, ordered phases show evidence of stronger hydrogen bonding of the cations and for the presence of C—N torsional modes.
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic $DyMnO_{3}$ single crystals
Resumo:
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.
Resumo:
Results of Raman spectroscopic studies of (NH4)2ZnBr4 crystal in the spectral range from 20-250 cm-1 and over a range of temperature from 90K to 440K covering the low temperature ferroelectric and high temperature incommensurate phases are presented. The plots of the integrated areas and peak heights of the strong Raman lines versus temperature show anomalous behaviour near the two phase transitions.
Resumo:
A two-state Ising model has been applied to the two-dimensional condensation of tymine at the mercury-water interface. The model predicts a quadratic dependence of the transition potential on temperature and on the logarithm of the adsorbate concentration. Both predictions have been confirmed experimentally.
Resumo:
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.
Resumo:
Single crystal [(111) and (100) planes], and powder ESR of Mn2+ (substituting for Ca2+) in Ca2Ba(C2H5COO)6 in the temperature range 220°C to -160°C shows (i) a doubling of both the physically and chemically inequivalent sites, and a change in the magnitude (150 G at -6°C to 170 G at -8°C) as well as the orientation of the D tensor across the -6°C transition and (ii) an inflection point in the D vs T plot across the -75°C transition. The oxygen octahedra around the Ca2+ sites are inferred to undergo alternate rotations, showing the participation of the carboxyl oxygens in the -6°C transition. A relation of the type D=D0(1+αT+βT2) seems to fit the D variation satisfactorily.
Resumo:
Variable temperature i.r. spectroscopic studies of weak pi-donor-pi-acceptor complexes in the crystalline state indicate that the complexes undergo order-disorder transitions, the disorder being caused by molecular motion. Thermodynamic data on the phase transitions along with the spectral data suggest that the high-temperature crystalline forms of the complexes are likely to be pseudoplastic.