203 resultados para PEPTIDE-PROTEIN INTERACTION
em Indian Institute of Science - Bangalore - Índia
Resumo:
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Resumo:
The virus inducible non-coding RNA (VINC) was detected initially in the brain of mice infected with Japanese encephalitis virus (JEV) and rabies virus. VINC is also known as NEAT1 or Men epsilon RNA. It is localized in the nuclear paraspeckles of several murine as well as human cell lines and is essential for paraspeckle formation. We demonstrate that VINC interacts with the paraspeckle protein, P54nrb through three different protein interaction regions (PIRs) one of which (PIR-1) is localized near the 50 end while the other two (PIR-2, PIR-3) are localized near the 30 region of VINC. Our studies suggest that VINC may interact with P54nrb through a novel mechanism which is different from that reported for protein coding RNAs. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is a very aggressive form of brain cancer with a poor survival and few qualified predictive markers. This study integrates experimentally validated genes that showed specific upregulation in GBM along with their protein-protein interaction information. A system level analysis was used to construct GBM-specific network. Computation of topological parameters of networks showed scale-free pattern and hierarchical organization. From the large network involving 1,447 proteins, we synthesized subnetworks and annotated them with highly enriched biological processes. A careful dissection of the functional modules, important nodes, and their connections identified two novel intermediary molecules CSK21 and protein phosphatase 1 alpha (PP1A) connecting the two subnetworks CDC2-PTEN-TOP2A-CAV1-P53 and CDC2-CAV1-RB-P53-PTEN, respectively. Real-time quantitative reverse transcription-PCR analysis revealed CSK21 to be moderately upregulated and PP1A to be overexpressed by 20-fold in GBM tumor samples. Immunohistochemical staining revealed nuclear expression of PP1A only in GBM samples. Thus, CSK21 and PP1A, whose functions are intimately associated with cell cycle regulation, might play key role in gliomagenesis. Cancer Res; 70(16); 6437-47. (C)2010 AACR.
Resumo:
Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
Resumo:
Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.
Resumo:
Background: Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results: Here we describe an integrated approach called ``PeptideMine'' for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions: The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine
Resumo:
Different DNA-binding proteins have different interaction modes with DNA. Sequence-specific DNA protein interaction has been mostly associated with regulatory processes inside a cell, and as such extensive studies have been made. Adequate data is also available on nonspecific DNA protein interaction, as an intermediate to protein's search for its cognate partner. Multidomain nonspecific DNA protein interaction involving physical sequestering of DNA has often been implicated to regulate gene expression indirectly. However, data available on this type of interaction is limited. One such interaction is the binding of DNA with mycobacterium DNA binding proteins. We have used the Langmuir-Blodgett technique to evaluate for the first time the kinetics and thermodynamics of Mycobacterium smegmatis Dps 1 binding to DNA. By immobilizing one of the interacting partners, we have shown that, when a kinetic bottleneck is applied, the binding mechanism showed cooperative binding (n = 2.72) at lower temperatures, but the degree of cooperativity gradually reduces (n = 1.38) as the temperature was increased We have also compared the kinetics and thermodynamics of sequence-specific and nonspecific DNA protein interactions under the same set of conditions.
Resumo:
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.
Resumo:
A galactose-specific protein (RC1) isolated from Ricinus communis beans was found to give a precipitin reaction with concanavalin A. Its carbohydrate content amounted to 8–9% of the total protein and was found to be rich in mannose. The interaction of RC1 with galactose and lactose was measured in 0.05 M phosphate buffer containing 0.2 M NaCl (pH 6.8) by the method of conventional equilibrium dialysis. From the analysis of the binding data according to Scatchard method the association constant (Ka) at 5°C was calculated as 3.8 mM−1 and 1.2 mM−1 for lactose and galactose, respectively. In both cases the number of binding sites per molecule of RC1 with molecular weight of 120000 was found to be 2. From the temperature-dependent Ka values for the binding of lactose, the values of –5.7 kcal/mol and –4.3 cal × mol−1× K−1 were calculated for ΔH and ΔS, respectively. The addition of concanavalin A to RC1 or vice versa led to the formation of the insoluble complex RC1· ConA4 containing one molecule of RC1 and one molecule of tetrameric concanavalin A (ConA4) which could be dissociated upon addition of concanavalin A-specific sugars. The complex formation results in a time-dependent appearance of turbidity in the time range from 10s to 10 min. From the measurement of the time-dependent appearance and disappearance of the turbidity the formation (kf) and dissociation (kd) rate constants were calculated as 3 mM−1× s−1 and 0.07 ks−1 respectively. The ratio kf/kd (43μM −1), that corresponds to the association constant of complex RC1· ConA4, is higher than that of mannoside · ConA4 and thereby suggests that protein-protein interaction contributes significantly in stabilising glycoprotein · lectin complexes. The relevance of this finding to the understanding of the chemical specificities that are involved in a model cell-lectin interaction is discussed.
Resumo:
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Resumo:
Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.
Resumo:
A lack of information on protein-protein interactions at the host-pathogen interface is impeding the understanding of the pathogenesis process. A recently developed, homology search-based method to predict protein-protein interactions is applied to the gastric pathogen, Helicobacter pylori to predict the interactions between proteins of H. pylori and human proteins in vitro. Many of the predicted interactions could potentially occur between the pathogen and its human host during pathogenesis as we focused mainly on the H. pylori proteins that have a transmembrane region or are encoded in the pathogenic island and those which are known to be secreted into the human host. By applying the homology search approach to protein-protein interaction databases DIP and iPfam, we could predict in vitro interactions for a total of 623 H. pylori proteins with 6559 human proteins. The predicted interactions include 549 hypothetical proteins of as yet unknown function encoded in the H. pylori genome and 13 experimentally verified secreted proteins. We have recognized 833 interactions involving the extracellular domains of transmembrane proteins of H. pylori. Structural analysis of some of the examples reveals that the interaction predicted by us is consistent with the structural compatibility of binding partners. Examples of interactions with discernible biological relevance are discussed.
Resumo:
The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.
Resumo:
The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.