146 resultados para PEPTIDE VACCINE
em Indian Institute of Science - Bangalore - Índia
Resumo:
T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.
Resumo:
We have designed a four-helix protein that is expected to tetramerize in the membrane to form an ion channel with a structurally well defined pore. A synthetic peptide corresponding to the channel lining helix facilitates ion transport across liposomal membranes and largely helical in membranes. Detailed circular dichroism studies of the peptide in methanol, water and methanal-water mixtures reveal that it is helical in methanol, beta-structured in 97.5% water and a combination of these two structures at intermediate compositions of methanol and water. A fluorescence resonance energy transfer study of the peptide shows that the peptide is monomeric in methanol but undergoes extensive anti-parallel aggregation in aqueous solution.
Resumo:
The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.
Resumo:
The peptide t-butyloxycarbonyl-α-aminoisobutyryl-L-prolyl-L-prolyl-N-methylamide has been shown to adopt an extended structure in the solid state. The Pro-Pro segment occurs in the poly-proline II conformation. On dissolution of single crystals at not, vert, similar 233°K, a single species corresponding to the all Image peptide backbone is observed by 270 MHz 1H NMR. On warming, Image to Image isomerization about the Pro-Pro bond is facilitated. Both Image (ψ not, vert, similar−50°) and Image (ψ not, vert, similar 130°) rotamers about the Pro3 Cα---CO bond are detectable in the Pro-Pro Image conformer, at low temperature. These observations demonstrate unambiguously the large differences in the solid state and solution conformations of a Pro-Pro sequence.
Resumo:
The monohydrate of the protected amino-terminal pentapeptide of suzukacillin, t-butoxycarbonyl--aminoisobutyryl-L-prolyl-L-valyl--aminoisobutyryl-L-valine methyl ester, C29H51N5O8, crystallizes in the orthorhombic space group P212121 with a= 10.192, b= 10.440, c= 32.959 Å, and Z= 4. The structure has been solved by direct methods and refined to an R value of 0.101 for 1 827 observed reflections. The molecule exists as a four-fold helix with a pitch of 5.58 Å. The helix is stabilised by N–H O hydrogen bonds, two of the 51 type (corresponding to the -helix) and the third of the 41 type (310 helix). The carbonyl oxygen of the amino-protecting group accepts two hydrogen bonds, one each from the amide NH groups of the third (41) and fourth (51) residues. The remaining 51 hydrogen bond is between the two terminal residues. The lone water molecule in the structure is hydrogen bonded to carbonyl oxygens of the prolyl residue in one molecule and the non-terminal valyl residue in a symmetry-related molecule.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.
Resumo:
The solution and solid-state conformations of the peptide disulfide Boc-Cys-Pro-Aib-Cys-NHMe have been determined by NMR spectroscopy and X-ray diffraction. The Cys(4) and methylamide NH groups are solvent shielded in CDCI3 and (CD,),SO, suggesting their involvement in intramolecular hydrogen bonding. On the basis of known stereochemical preferences of Pro and Aib residues, a consecutive @-turn structure is favored in solution. X-ray diffraction analysis reveals a highly folded 310 helical conformation for the peptide, with the S-S bridge lying approximately parallel to the helix axis, linking residues 1 and 4. The backbone conformational angles are Cys(1) 4 = -121.1', $ = 65.6"; Pro(2) 4 = -58.9', 4 = -34.0'; Aib(3) 4 = -61.8', $ = -17.9'; Cys(4) 4 = -70.5', $ = -18.6'. Two intramolecular hydrogen bonds are observed between Cys(1) CO--HN Cys(4) and Pro(2) CO--HNMe. The disulfide bond has a right-handed chirality, with a dihedral angle (xss) of 82'.
Resumo:
SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.
Resumo:
C16H20N204, monoclinic, P21, a = 6.270 (1),b= 11.119(3),c= ll.640(4)A, fl= 100.7 (2)°,Dm = 1-27 (flotation), Dc = 1-26 Mg m -3, Z = 2. The structure has been refined to a final R value of 0.041 for 1584 independent counter-measured reflections. The oxazolone ring in the molecule is nearly planar. The exocyclic O atom is 0.065 A out of the plane defined by the other four atoms in the ring belonging to the lactone group. The difference in length between the two adjacent C-O bonds in the ring is small, but significant. The crystal structure is stabilized by van der Waals interactions and a N--H... N hydrogen bond.
Resumo:
Formation of fibril-type nanostructures of the Alzheimer's beta-amyloid diphenylalanine (L-Phe-L-Phe, FF) at the organic-aqueous interface and the factors affecting their structures have been investigated. Such nanostructures are also formed by bovine serum albumin and bovine pancreas insulin. The concentration of the precursor taken in the aqueous layer plays an important role in determining the morphology of the nanostructures, The addition of curcumin to the organic layer changes the structure of the self-assembled one-dimensional aggregates of diphenylalanine. By coating the diphenylalanine dipeptide fibrils with appropriate precursors followed by calcination in air, it has been possible to obtain one-dimensional nanostructures of inorganic materials.
Resumo:
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.
Resumo:
Alamethicin, its derivatives and some synthetic fragments have been shown to be uncouplers of oxidative phosphorylation in rat liver mitochondria. A minimum peptide chain length of 13 residues is necessary for this activity. Peptide esters are more efficient uncouplers than the corresponding peptide acids. Esterification of the Glu(18) γ-COOH group in alamethicin does not diminish uncoupling activity. The structural requirements for uncoupling activity parallel those determined for ionophoretic action in small, unilamellar liposomes. Aib, α-aminoisobutyric acid; Z, benzyloxycarbonyl; OMe, methyl ester; OBz, benzyl ester; Ac, acetyl; CTC, chlortetracycline.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.