317 resultados para P CODES

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three different algorithms are described for the conversion of Hensel codes to Farey rationals. The first algorithm is based on the trial and error factorization of the weight of a Hensel code, inversion and range test. The second algorithm is deterministic and uses a pair of different p-adic systems for simultaneous computation; from the resulting weights of the two different Hensel codes of the same rational, two equivalence classes of rationals are generated using the respective primitive roots. The intersection of these two equivalence classes uniquely identifies the rational. Both the above algorithms are exponential (in time and/or space).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)pan class='textbac'>kpan>slashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between optical Barker codes and self-orthogonal convolutional codes is pointed out. It is then used to update the results in earlier publication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erasure coding techniques are used to increase the reliability of distributed storage systems while minimizing storage overhead. Also of interest is minimization of the bandwidth required to repair the system following a node failure. In a recent paper, Wu et al. characterize the tradeoff between the repair bandwidth and the amount of data stored per node. They also prove the existence of regenerating codes that achieve this tradeoff. In this paper, we introduce Exact Regenerating Codes, which are regenerating codes possessing the additional property of being able to duplicate the data stored at a failed node. Such codes require low processing and communication overheads, making the system practical and easy to maintain. Explicit construction of exact regenerating codes is provided for the minimum bandwidth point on the storage-repair bandwidth tradeoff, relevant to distributed-mail-server applications. A sub-space based approach is provided and shown to yield necessary and sufficient conditions on a linear code to possess the exact regeneration property as well as prove the uniqueness of our construction. Also included in the paper, is an explicit construction of regenerating codes for the minimum storage point for parameters relevant to storage in peer-to-peer systems. This construction supports a variable number of nodes and can handle multiple, simultaneous node failures. All constructions given in the paper are of low complexity, requiring low field size in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bose-C-Hocquenghem (BCH) atdes with symbols from an arbitrary fhite integer ring are derived in terms of their generator polynomials. The derivation is based on the factohation of x to the power (n) - 1 over the unit ring of an appropriate extension of the fiite integer ring. lke eomtruetion is thus shown to be similar to that for BCH codes over fink flelda.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a storage system where individual storage nodes are prone to failure, the redundant storage of data in a distributed manner across multiple nodes is a must to ensure reliability. Reed-Solomon codes possess the reconstruction property under which the stored data can be recovered by connecting to any k of the n nodes in the network across which data is dispersed. This property can be shown to lead to vastly improved network reliability over simple replication schemes. Also of interest in such storage systems is the minimization of the repair bandwidth, i.e., the amount of data needed to be downloaded from the network in order to repair a single failed node. Reed-Solomon codes perform poorly here as they require the entire data to be downloaded. Regenerating codes are a new class of codes which minimize the repair bandwidth while retaining the reconstruction property. This paper provides an overview of regenerating codes including a discussion on the explicit construction of optimum codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P-450 has been purified from phenobarbital-treated rat livers to a specific content of 17 nmol/mg protein. The major species purified has a molecular weight of 48,000. Using the purified antibody for the cytochrome P-450 preparation it has been shown that the major product synthesized in vivo and in the homologous cell-free system in vitro is the 48,000 molecular weight species. Poly(A)-containing RNA isolated from phenobarbital-treated animals codes for the synthesis of the 48,000 molecular weight species in the wheat germ and reticulocyte lysate cell-free systems. It is concluded that cytochrome P-450 synthesis does not involve processing of a polyprotein precursor, although certain minor modifications including glycosylation of the primary translation product are not ruled out. Phenobarbital treatment of the animal results in a significant increase in the cytochrome P-450 messenger activity as measured in the wheat germ cell-free system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the distributed storage setting that we consider, data is stored across n nodes in the network such that the data can be recovered by connecting to any subset of k nodes. Additionally, one can repair a failed node by connecting to any d nodes while downloading beta units of data from each. Dimakis et al. show that the repair bandwidth d beta can be considerably reduced if each node stores slightly more than the minimum required and characterize the tradeoff between the amount of storage per node and the repair bandwidth. In the exact regeneration variation, unlike the functional regeneration, the replacement for a failed node is required to store data identical to that in the failed node. This greatly reduces the complexity of system maintenance. The main result of this paper is an explicit construction of codes for all values of the system parameters at one of the two most important and extreme points of the tradeoff - the Minimum Bandwidth Regenerating point, which performs optimal exact regeneration of any failed node. A second result is a non-existence proof showing that with one possible exception, no other point on the tradeoff can be achieved for exact regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the distributed storage setting introduced by Dimakis et al., B units of data are stored across n nodes in the network in such a way that the data can be recovered by connecting to any k nodes. Additionally one can repair a failed node by connecting to any d nodes while downloading at most beta units of data from each node. In this paper, we introduce a flexible framework in which the data can be recovered by connecting to any number of nodes as long as the total amount of data downloaded is at least B. Similarly, regeneration of a failed node is possible if the new node connects to the network using links whose individual capacity is bounded above by beta(max) and whose sum capacity equals or exceeds a predetermined parameter gamma. In this flexible setting, we obtain the cut-set lower bound on the repair bandwidth along with a constructive proof for the existence of codes meeting this bound for all values of the parameters. An explicit code construction is provided which is optimal in certain parameter regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the distributed storage coding problem we consider, data is stored across n nodes in a network, each capable of storing � symbols. It is required that the complete data can be reconstructed by downloading data from any k nodes. There is also the key additional requirement that a failed node be regenerated by connecting to any d nodes and downloading �symbols from each of them. Our goal is to minimize the repair bandwidth d�. In this paper we provide explicit constructions for several parameter sets of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diversity embedded space time codes are high rate codes that are designed such that they have a high diversity code embedded within them. A recent work by Diggavi and Tse characterizes the performance limits that can be achieved by diversity embedded space-time codes in terms of the achievable Diversity Multiplexing Tradeoff (DMT). In particular, they have shown that the trade off is successively refinable for rayleigh fading channels with one degree of freedom using superposition coding and Successive Interference Cancellation (SIC). However, for Multiple-Input Multiple-Output (MIMO) channels, the questions of successive refinability remains open. We consider MIMO Channels under superposition coding and SIC. We derive an upper bound on the successive refinement characteristics of the DMT. We then construct explicit space time codes that achieve the derived upper bound. These codes, constructed from cyclic division algebras, have minimal delay. Our results establish that when the channel has more than one degree of freedom, the DMT is not successive refinable using superposition coding and SIC. The channels considered in this work can have arbitrary fading statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.