275 resultados para Oxidation rate

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oxidation rate of a cuprous sulfide pellet suspended in a stream of air was followed by measuring the evolution of SO2 titrimetrically. Thin thermocouples embedded in the center of the sample recorded the variation of temperature during oxidation. The reaction was found to be topochemical and the sample temperature was found to be higher than its surroundings initially for about half an hour. After this initial period, the sample temperature decreased to that of the surroundings and remained constant during the rest of the period of over 5 hr. The apparent activation energy from the experimental data was found to be different for the initial (nonisothermal) and subsequent (isothermal) periods. Rate controlling mechanisms for these two intervals have been proposed based on interface chemical reaction, mass transfer resistance, and heat transfer concepts. Fair agreement is found between the theoretical rates based on transport mechanisms and those obtained experimentally

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of zinc sulphide pellets is carried out in the ranges of 600-826°C temperature, 0.3-0.5 porosity and 15-50 minutes of reaction time. An experimental technique is employed to simultaneously determine the rate of weight loss of the solid and conversions of the solid reactant at various levels in the pellet for different reaction times. A structural model is used to explain the experimental results. It is found that the model predicts both the experimental results obtained under various conditions reasonably well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on titanium-substrate lead dioxide electrodes have been investigated experimentally and theoretically. It has been demonstrated that the ionic strength of the solution has a marked effect on the rate of perchlorate formation, whereas the pH of the solution does not influence the reaction rate. Experimental data have also been obtained on the dependence of the reaction rate on the concentration of chlorate ion in the solution at constant ionic strength. With these data, diagnostic kinetic criteria have been deduced and compared with corresponding quantities predicted for various possible mechanisms including double layer effects on electrode kinetics. It has thus been shown that the most probable mechanisms for anodic chlorate oxidation on lead dioxide anodes involve the discharge of a water molecule in a one-electron transfer step to give an adsorbed hydroxyl radical as the rate-determining step for the overall reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into consideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wilkinson complex, insolubilized by anchoring to polymeric Amberlite beads, had been used for the liquid-phase catalytic oxidation of styrene to benzaldehyde and formaldehyde in toluene medium. Styrene conversion was followed by measuring the oxygen volume in contact with the reaction mixture in a specially designed closed batch apparatus. Styrene conversion depended upon catalyst loading and distribution inside the porous beads, while temperature had little effect on it. The internal diffusional effects on the conversion process have been taken into onsideration by a mathematical model which allowed calculation of effectiveness factors for various catalyst loadings and corresponding catalyst distributions. The influence of external diffusion was separately determined by plotting initial rate versus catalyst loading. The proposed method can be readily extended to immobilized enzymes in porous matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiosulfate (S2O32−) and tetrathionate (S4O62−)are oxidized to sulfate by air at atmospheric pressure and 50–70°C in the presence of cuprous oxide (Cu2O) as catalyst. Sulfate is produced from S2O32− by series-parallel reaction paths involving S4O62− as an intermediate. The rate data obtained for air oxidation of S2O32− on Cu2O agree well with a pseudo-homogeneous first order kinetic scheme, yielding values of rate constants for series parallel reaction paths which have been used in modelling the catalyzed air oxidation of S2O32−. Air oxidation of S4O62− on Cu2O proceeds at a higher rate in the presence of S2O32− than in its absence. Cu2O is less active than Cu2S for the air oxidation of S2O32−, as shown by the rate constant values which for Cu2O catalyzed oxidation are an order of magnitude smaller than those for the Cu2S catalyzed oxidation.