7 resultados para Oryza sative

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 angstrom resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.