93 resultados para Orthogonal polynomials in several variables
em Indian Institute of Science - Bangalore - Índia
Resumo:
Wavenumber-frequency spectral analysis of different atmospheric variables has been carried Out using 25 years of data. The area considered is the tropical belt 25 degrees S-25 degrees N. A combined FFT wavelet analysis method has been used for this purpose. Variables considered are outgoing long wave radiation (OLR), 850 hPa divergence, zonal and meridional winds at 850, 500 and 200 hPa levels, sea level pressure and 850 hPa geopotential height. It is shown that the spectra of different variables have some common properties, but each variable also has few features diffe:rent from the rest. While Kelvin mode is prominent in OLR, and zonal winds, it is not clearly observed in pressure and geopotential height fields; the latter two have a dominant wavenumber zero mode not seen in other variables except in meridional wind at 200 hPa and 850 hPa divergences. Different dominant modes in the tropics show significant variations on sub-seasonal time scales.
Resumo:
For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.
Resumo:
Fiber-reinforced plastics (FRPs) are typically difficult to machine due to their highly heterogeneous and anisotropic nature and the presence of two phases (fiber and matrix) with vastly different strengths and stiffnesses. Typical machining damage mechanisms in FRPs include series of brittle fractures (especially for thermosets) due to shearing and cracking of matrix material, fiber pull-outs, burring, fuzzing, fiber-matrix debonding, etc. With the aim of understanding the influence of the pronounced heterogeneity and anisotropy observed in FRPs, ``Idealized'' Carbon FRP (I-CFRP) plates were prepared using epoxy resin with embedded equispaced tows of carbon fibers. Orthogonal cutting of these I-CFRPs was carried out, and the chip formation characteristics, cutting force signals and strain distributions obtained during machining were analyzed using the Digital Image Correlation (DIC) technique. In addition, the same procedure was repeated on Uni-Directional CFRPs (UD-CFRPs). Chip formation mechanisms in FRPs were found to depend on the depth of cut and fiber orientation with pure epoxy showing a pronounced ``size effect.'' Experimental results indicate that in-situ full field strain measurements from DIC coupled with force measurements using dynamometry provide an adequate measure of anisotropy and heterogeneity during orthogonal cutting.
Resumo:
Consider the domain E in defined by This is called the tetrablock. This paper constructs explicit boundary normal dilation for a triple (A, B, P) of commuting bounded operators which has as a spectral set. We show that the dilation is minimal and unique under a certain natural condition. As is well-known, uniqueness of minimal dilation usually does not hold good in several variables, e.g., Ando's dilation is known to be not unique, see Li and Timotin (J Funct Anal 154:1-16, 1998). However, in the case of the tetrablock, the third component of the dilation can be chosen in such a way as to ensure uniqueness.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
Given a function from Z(n) to itself one can determine its polynomial representability by using Kempner function. In this paper we present an alternative characterization of polynomial functions over Z(n) by constructing a generating set for the Z(n)-module of polynomial functions. This characterization results in an algorithm that is faster on average in deciding polynomial representability. We also extend the characterization to functions in several variables. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A technique based on empirical orthogonal functions is used to estimate hydrologic time-series variables at ungaged locations. The technique is applied to estimate daily and monthly rainfall, temperature and runoff values. The accuracy of the method is tested by application to locations where data are available. The second-order characteristics of the estimated data are compared with those of the observed data. The results indicate that the method is quick and accurate.
Resumo:
The magnetohydrodynamics (MHD) flow of a conducting, homogeneous incompressible Rivlin-Ericksen fluid of second grade contained between two infinite, parallel, insulated disks rotating with the same angular velocity about two noncoincident axes, under the application of a uniform transverse magnetic field, is investigated. This model represents the MHD flow of the fluid in the instrument called an orthogonal rheometer, except for the fact that in the rheometer the rotating plates are necessarily finite. An exact solution of the governing equations of motion is presented. The force components in the x and y directions on the disks are calculated. The effects of magnetic field and the viscoelastic parameter on the forces are discussed in detail.
Resumo:
Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.
Resumo:
Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.
Resumo:
Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.
Resumo:
In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.
B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy
Resumo:
An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).
Resumo:
Vibrational relaxation measurements on the CO asymmetric stretching mode (similar to 1980 cm(-1)) of tungsten hexacarbonyl (W(CO)(6)) as a function of temperature at constant density in several supercritical solvents in the vicinity of the critical point are presented. In supercritical ethane, at the critical density, there is a region above the critical temperature (Tc) in which the lifetime increases with increasing temperature. When the temperature is raised sufficiently (similar to T-c + 70 degrees C), the lifetime decreases with further increase in temperature. A recent hydrodynamic/thermodynamic theory of vibrational relaxation in supercritical fluids reproduces this behavior semiquantitatively. The temperature dependent data for fixed densities somewhat above and below the critical density is in better agreement with the theory. In fluoroform solvent at the critical density, the vibrational lifetime also initially increases with increasing temperature. However, in supercritical CO2 at the critical density, the temperature dependent vibrational lifetime decreases approximately linearly with temperature beginning almost immediately above T-c. The theory does not reproduce this behavior. A comparison between the absolute lifetimes in the three solvents and the temperature trends is made.
Resumo:
Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.