100 resultados para Oriented Cue Exposure
em Indian Institute of Science - Bangalore - Índia
Resumo:
Nitrogen plasma exposure (NPE) effects on indium doped bulk n-CdTe are reported here. Excellent rectifying characteristics of Au/n-CdTe Schottky diodes, with an increase in the barrier height, and large reverse breakdown voltages are observed after the plasma exposure. Surface damage is found to be absent in the plasma exposed samples. The breakdown mechanism of the heavily doped Schottky diodes is found to shift from the Zener to avalanche after the nitrogen plasma exposure, pointing to a change in the doping close to the surface which was also verified by C-V measurements. The thermal stability of the plasma exposure process is seen up to a temperature of 350 degrees C, thereby enabling the high temperature processing of the samples for device fabrication. The characteristics of the NPE diodes are stable over a year implying excellent diode quality. A plausible model based on Fermi level pinning by acceptor-like states created by plasma exposure is proposed to explain the observations.
Resumo:
A systematic study of Ar ion implantation in cupric oxide films has been reported. Oriented CuO films were deposited by pulsed excimer laser ablation technique on (1 0 0) YSZ substrates. X-ray diffraction (XRD) spectra showed the highly oriented nature of the deposited CuO films. The films were subjected to ion bombardment for studies of damage formation, Implantations were carried out using 100 keV Arf over a dose range between 5 x 10(12) and 5 x 10(15) ions/cm(2). The as-deposited and ion beam processed samples were characterized by XRD technique and resistance versus temperature (R-T) measurements. The activation energies for electrical conduction were found from In [R] versus 1/T curves. Defects play an important role in the conduction mechanism in the implanted samples. The conductivity of the film increases, and the corresponding activation energy decreases with respect to the dose value.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
Uniformity in bias tilt, for the polyvinyl alcohol(PVA)surface layer induced orientation of nematic liquid crystals, could be achieved for large area display panels, if one of the transparent electrodes is first directionally rubbed with fine abrasive; then both the electrodes coated with PVA, followed by directionally buffing the chemisorbed layers in the same direction. Uniformity may be due to increased 'train' configuration of the adsorbed macromolecule by falling on to microgrooves and maintaining the same sense of asymmetry for the looped segments.
Resumo:
Proton NMR spectra of 1,3-diazanaphthalene and 1,2,4-triazanaphthalene have been investigated in the nematic phase of three liquid crystals. The spectral analysis provided direct dipole-dipole couplings which have been used to derive the molecular structure. Geometry of the phenyl ring in both the molecules deviates from the regular hexagonal structure. Signs of the order parameter of the largest magnitude are opposite in liquid crystals with positive diamagetic anisotropies.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.
Resumo:
Loads that miss in L1 or L2 caches and waiting for their data at the head of the ROB cause significant slow down in the form of commit stalls. We identify that most of these commit stalls are caused by a small set of loads, referred to as LIMCOS (Loads Incurring Majority of COmmit Stalls). We propose simple history-based classifiers that track commit stalls suffered by loads to help us identify this small set of loads. We study an application of these classifiers to prefetching. The classifiers are used to train the prefetcher to focus on the misses suffered by LIMCOS. This, referred to as focused prefetching, results in a 9.8% gain in IPC over naive GHB based delta correlation prefetcher along with a 20.3% reduction in memory traffic for a set of 17 memory-intensive SPEC2000 benchmarks. Another important impact of focused prefetching is a 61% improvement in the accuracy of prefetches. We demonstrate that the proposed classification criterion performs better than other existing criteria like criticality and delinquent loads. Also we show that the criterion of focusing on commit stalls is robust enough across cache levels and can be applied to any prefetcher without any modifications to the prefetcher.
Resumo:
The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
From the proton nmr studies of 2-thiocoumarin and coumarin, it is concluded that the relative interproton distances in the two oxygen heteroatom bicyclic systems are similar. The values for the phenyl ring protons do not deviate significantly from the regular hexagonal geometry, unlike bicyclic systems with nitrogens as the heteroatoms, such as diazanaphthalenes. Larger values of the indirect spin-spin couplings within the protons of the ring containing the oxygen heteroatom, compared to the values between the ortho protons in the phenyl rings in coumarin and 2-thiocoumarin, correspond to the olefinic nature of these protons. This is in contrast to results for the nitrogen heterocycles where both the rings are aromatic.
Resumo:
The appearance of spinning side bands in the 2H NMR spectra of oriented molecules is investigated. A theoretical interpretation of the side-band intensities is carried out. Information derived on the director orientation and distribution as a function of spinning speedis reported.
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) stimulated liver tryptophan pyrrolase 2-fold between 3 and 48 h. Plasma corticosterone increased 2-fold after 1 h of heat exposure and decreased to a low value of 50% by 16 h. The effect of heat exposure on the enzyme was obtained in adrenalectomized animals. Stimulation by cortisol and tryptophan of the enzyme was also obtained in heat exposure, and the effects seemed to be additive. The concentration of tryptophan in the liver remained unchanged, and that in the plasma decreased to about 50% at 8 h exposure to heat and reverted to normal by 46 h. Simultaneous administration of noradrenaline to heat-exposed rats had no effect, whereas that of thyroxine partly prevented the stimulation of the enzyme activity. Hypothyroid conditions obtained by thyroidectomy or treatment with propylthiouracil significantly stimulated the enzyme activity. Cycloheximide treatment of heat-exposed rats did not prevent the stimulation of the enzyme activity. The results indicate that the effect of heat exposure on liver tryptophan pyrrolase is obtained, due to the accompanying hypothyroid condition, by increasing the activity of the existing protein by a mechanism possibly different from those known at present.
Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.
Resumo:
Growing crystals with selected structure and preferred orientations oil seed substrates is crucial for a wide variety of applications. Although epitaxial or textured film growth of a polymorph whose structure resembles the seed crystal structure is well-known, growing oriented nanocrystal arrays or more than one polymorph, selectable one at a time, from the same seed has not been realized. Here, we demonstrate for the first time the exclusive growth of oriented nanocrystal arrays of two titania polymorphs from a titanate crystal by chemically activating respective polymorph-mimicking crystallographic facets in the seed. The oriented titania nanocrystal arrays exhibit significantly higher photocatalytic activity than randomly oriented polymorphs. Our approach of chemically sculpting oriented nanocrystal polymorph arrays could be adapted to other materials systems to obtain novel properties.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.