2 resultados para Organizational Silence

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since their emergence, wireless sensor networks (WSNs) have become increasingly popular in the pervasive computing industry. This is particularly true within the past five years, which has seen sensor networks being adapted for wide variety of applications. Most of these applications are restricted to ambience monitoring and military use, however, very few commercial sensor applications have been explored till date. For WSNs to be truly ubiquitous, many more commercial sensor applications are yet to be investigated. As an effort to probe for such an application, we explore the potential of using WSNs in the field of Organizational Network Analysis (ONA). In this short paper, we propose a WSN based framework for analyzing organizational networks. We describe the role of WSNs in learning relationships among the people of an organization and investigate the research challenges involved in realizing the proposed framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rain forest dusk chorus consists of a large number of individuals of acoustically communicating species signaling at the same time. How different species achieve effective intra-specific communication in this complex and noisy acoustic environment is not well understood. In this study we examined acoustic masking interference in an assemblage of rain forest crickets and katydids. We used signal structures and spacing of signalers to estimate temporal, spectral and active space overlap between species. We then examined these overlaps for evidence of strategies of masking avoidance in the assemblage: we asked whether species whose signals have high temporal or spectral overlap avoid calling together. Whereas we found evidence that species with high temporal overlap may avoid calling together, there was no relation between spectral overlap and calling activity. There was also no correlation between the spectral and temporal overlaps of the signals of different species. In addition, we found little evidence that species calling in the understorey actively use spacing to minimize acoustic overlap. Increasing call intensity and tuning receivers however emerged as powerful strategies to minimize acoustic overlap. Effective acoustic overlaps were on average close to zero for most individuals in natural, multispecies choruses, even in the absence of behavioral avoidance mechanisms such as inhibition of calling or active spacing. Thus, call temporal structure, intensity and frequency together provide sufficient parameter space for several species to call together yet communicate effectively with little interference in the apparent cacophony of a rain forest dusk chorus.