17 resultados para Options (Finance) -- Mathematical models
em Indian Institute of Science - Bangalore - Índia
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNPO4 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity theta and the wavelength lambda of a plane wave; we show that PD leads to a periodic, spatial modulation of theta and a temporally periodic modulation of lambda; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNPO4 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNPO4 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.
Resumo:
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two-and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.
Resumo:
We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.
Resumo:
The basic concepts and techniques involved in the development and analysis of mathematical models for individual neurons and networks of neurons are reviewed. Some of the interesting results obtained from recent work in this field are described. The current status of research in this field in India is discussed
Resumo:
The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.
Resumo:
Mathematical models have provided key insights into the pathogenesis of hepatitis C virus (HCV) in vivo, suggested predominant mechanism(s) of drug action, explained confounding patterns of viral load changes in HCV infected patients undergoing therapy, and presented a framework for therapy optimization. In this article, I present an overview of the major advances in the mathematical modeling of HCV dynamics.
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.
Resumo:
Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as E-f, the fibroblast resting-membrane potential, the fibroblast conductance G(f), and the MF gap-junctional coupling G(gap). Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as G(gap), G(f), and E-f, and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of G(gap), for zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of G(gap), and, eventually, we observe that conduction failure occurs for low values of G(gap). In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling G(gap) or E-f. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.
Resumo:
Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.
Resumo:
The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.
Resumo:
Starting from the early decades of the twentieth century, evolutionary biology began to acquire mathematical overtones. This took place via the development of a set of models in which the Darwinian picture of evolution was shown to be consistent with the laws of heredity discovered by Mendel. The models, which came to be elaborated over the years, define a field of study known as population genetics. Population genetics is generally looked upon as an essential component of modern evolutionary theory. This article deals with a famous dispute between J. B. S. Haldane, one of the founders of population genetics, and Ernst Mayr, a major contributor to the way we understand evolution. The philosophical undercurrents of the dispute remain relevant today. Mayr and Haldane agreed that genetics provided a broad explanatory framework for explaining how evolution took place but differed over the relevance of the mathematical models that sought to underpin that framework. The dispute began with a fundamental issue raised by Mayr in 1959: in terms of understanding evolution, did population genetics contribute anything beyond the obvious? Haldane's response came just before his death in 1964. It contained a spirited defense, not just of population genetics, but also of the motivations that lie behind mathematical modelling in biology. While the difference of opinion persisted and was not glossed over, the two continued to maintain cordial personal relations.
Resumo:
An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.
Resumo:
The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.