5 resultados para Ophthalmia, Sympathetic.
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this study, we investigated measures of nonlinear dynamics and chaos theory in regards to heart rate variability in 27 normal control subjects in supine and standing postures, and 14 subjects in spontaneous and controlled breathing conditions. We examined minimum embedding dimension (MED), largest Lyapunov exponent (LLE) and measures of nonlinearity (NL) of heart rate time series. MED quantifies the system's complexity, LLE predictability and NL, a measure of deviation from linear processes. There was a significant decrease in complexity (P<0.00001), a decrease in predictability (P<0.00001) and an increase in nonlinearity (P=0.00001) during the change from supine to standing posture. Decrease in MED, and increases in NL score and LLE in standing posture appear to be partly due to an increase in sympathetic activity of the autonomous nervous system in standing posture. An improvement in predictability during controlled breathing appears to be due to the introduction of a periodic component. (C) 2000 published by Elsevier Science B.V.
Resumo:
The decomposition of the beta phase in rapidly quenched Ti-2.8 at. pet Co, Ti-5.4 at. pet Ni, Ti-4.5 at. pet, and 5.5 at. pet Cu alloys has been investigated by electron microscopy. During rapid quenching, two competitive phase transformations, namely martensitic and eutectoid transformation, have occurred, and the region of eutectoid transformation is extended due to the high cooling rates involved. The beta phase decomposed into nonlamellar eutectoid product (bainite) having a globular morphology in Ti-2.8 pet Co and Ti-4.5 pet Cu (hypoeutectoid) alloys. In the near-eutectoid Ti-5.5 pet Cu alloy, the decomposition occurred by a lamellar (pearlite) type, whereas in Ti-5.4 pct Ni (hypereutectoid), both morphologies were observed. The interfaces between the proeutectoid alpha and the intermetallic compound in the nonlamellar type as well as between the proeutectoid alpha and the pearlite were often found to be partially coherent. These findings are in agreement with the Lee and Aaronson model proposed recently for the evolution of bainite and pearlite structures during the solid-state transformations of some titanium-eutectoid alloys. The evolution of the Ti2Cu phase during rapid quenching involved the formation of a metastable phase closely related to an ''omega-type'' phase before the equilibrium phase formed. Further, the lamellar intermetallic compound Ti2Cu was found to evolve by a sympathetic nucleation process. Evidence is established for the sympathetic nucleation of the proeutectoid alpha crystals formed during rapid quenching.
Resumo:
Background: Depression and anxiety have been linked to serious cardiovascular events in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate (HR) variability has been linked to sudden death. Methods: We compared LLE and nonlinearity scores of the unfiltered (UF) and filtered time series (very low, low, and high frequency; VLF, LF and HF) of HR between patients with depression (n = 14) and healthy control subjects (n = 18). Results: We found significantly lower LLE of the unfiltered series in either posture, and HF series in patients with major depression in supine posture (p < .002). LLE (LF/UF), which may indicate relative sympathetic activity was also significantly higher in supine and standing postures in patients (p < .05); LF/HF (LLE) was also higher in patients (p < .05) in either posture. Conclusions: These findings suggest that major depression is associated with decreased cardiac vagal function and a relative increase in sympathetic function, which may be related to the higher risk of cardiovascular mortality, in this group and illustrates the usefulness of nonlinear measures of chaos such as LLE in addition to the commonly used spectral measures.
Resumo:
In this study, we investigated nonlinear measures of chaos of QT interval time series in 28 normal control subjects, 36 patients with panic disorder and 18 patients with major depression in supine and standing postures. We obtained the minimum embedding dimension (MED) and the largest Lyapunov exponent (LLE) of instantaneous heart rate (HR) and QT interval series. MED quantifies the system's complexity and LLE predictability. There was a significantly lower MED and a significantly increased LLE of QT interval time series in patients. Most importantly, nonlinear indices of QT/HR time series, MEDqthr (MED of QT/HR) and LLEqthr (LLE of QT/HR), were highly significantly different between controls and both patient groups in either posture. Results remained the same even after adjusting for age. The increased LLE of QT interval time, series in patients with anxiety and depression is in line with our previous findings of higher QTvi (QT variability index, a log ratio of QT variability corrected for mean QT squared divided by heart rate variability corrected for mean heart rate squared) in these patients, using linear techniques. Increased LLEqthr (LLE of QT/HR) may be a more sensitive tool to study cardiac repolarization and a valuable addition to the time domain measures such as QTvi. This is especially important in light of the finding that LLEqthr correlated poorly and nonsignificantly with QTvi. These findings suggest an increase in relative cardiac sympathetic activity and a decrease in certain aspects of cardiac vagal function in patients with anxiety as well as depression. The lack of correlation between QTvi and LLEqthr suggests that this nonlinear index is a valuable addition to the linear measures. These findings may also help to explain the higher incidence of cardiovascular mortality in patients with anxiety and depressive disorders. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We performed numerical experiments on a one-dimensional elastic solid oscillating in a two-dimensional viscous incompressible fluid with the intent of discerning the interplay of vorticity and elastodynamics in flapping wing propulsion. Perhaps for the first time, we have established the role of foil deflection topology and its influence on vorticity generation, through spatially and temporally evolving foil slope and curvature. Though the frequency of oscillation of the foil has a definite role, it is the phase relation between foil slope and pressure that determines thrust or drag. Similarly, the phase difference between flapping velocity, and pressure and inertial forces, determine the power input to the foil, and in turn drives propulsive efficiency. At low frequencies of oscillation, the sympathetic slope and curvature of deformation of the foil allow generation of leading-edge vortices that do not separate; they cause substantial rise in pressure between the leading edge and mid-chord. The circulatory component of pressure is determined primarily by the leading-edge vortex and therefore thrust too is predominantly circulatory in origin at low frequencies. In the intermediate and high-frequency range, thrust and drag on the foil spatially alternate and non-circulatory forces dominate over circulatory and viscous forces. For the mass ratios we simulated, thrust due to flapping varies quadratically as a function of Strouhal number or trailing-edge flapping velocity; further, the trailing edge flapping velocities peak at the same set of frequencies where the thrust is also a maximum. Propulsive efficiency, on the other hand, is roughly a mirror image of the thrust variation with respect to Strouhal number. Given that most instances of flapping propulsion in nature are primarily through distributed muscular actuation that enables precise control of deformation shape, leading to high thrust and efficiency, the results presented here are pointers towards understanding some of the mechanisms that drive thrust and propulsive efficiency.