24 resultados para Operational safety
em Indian Institute of Science - Bangalore - Índia
Resumo:
Experimental results on a loop heat pipe, using R134a as the working fluid, indicates that the liquid inventory in the compensation chamber can significantly influence the operating characteristics. The large liquid inventory in the compensation chamber, under terrestrial conditions, can result in loss of thermal coupling between the compensation chamber and the evaporator core. This causes the operating temperature to increase monotonically. This phenomenon, which has been experimentally observed, is reported in this paper. A theoretical model to predict the steady-state performance of a loop heat pipe with a weak thermal link between the compensation chamber and the core, as observed in the experiment, is also presented. The predicted and the experimentally determined temperatures correlate well.
Resumo:
This paper presents on overview of the issues in precisely defining, specifying and evaluating the dependability of software, particularly in the context of computer controlled process systems. Dependability is intended to be a generic term embodying various quality factors and is useful for both software and hardware. While the developments in quality assurance and reliability theories have proceeded mostly in independent directions for hardware and software systems, we present here the case for developing a unified framework of dependability—a facet of operational effectiveness of modern technological systems, and develop a hierarchical systems model helpful in clarifying this view. In the second half of the paper, we survey the models and methods available for measuring and improving software reliability. The nature of software “bugs”, the failure history of the software system in the various phases of its lifecycle, the reliability growth in the development phase, estimation of the number of errors remaining in the operational phase, and the complexity of the debugging process have all been considered to varying degrees of detail. We also discuss the notion of software fault-tolerance, methods of achieving the same, and the status of other measures of software dependability such as maintainability, availability and safety.
Resumo:
Negative impedance converters (NIC's) may be used to realize negative driving-point impedances. The effect of the nonideal characteristics of the operational amplifier such as finite frequencydependent gain and output impedance on the performance of the negative impedances is analyzed. Detailed equivalent circuits showing the additional positive or negative inductive impedances due to the nonideal characteristics are given for negative resistance and negative capacitance realizations, and their relative performances are compared. The experimental results confirm the validity of the equivalent circuits. The effect of the slew rate of the operational amplifier on the maximum signal-handling capability (SHC) of the negative impedances at high frequencies is studied. Practical design considerations for achieving wider bandwidth as well as improved SHC are discussed.
Resumo:
The departures of the operational amplifiers (OA's) from the ideal performance and their effect on VCV's in the inverting and noninverting mode are discussed. It is found that for the same ideal gain, the bandwidths for the inverting and noninverting modes are different, the former being less. Complete equivalent circuits describing the frequency dependance of the input and output impedances for both modes are given. In particular, the output impedance is shown to be inductive for the frequencies of interest, and this is also confirmed by experimental results.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
Memory models of shared memory concurrent programs define the values a read of a shared memory location is allowed to see. Such memory models are typically weaker than the intuitive sequential consistency semantics to allow efficient execution. In this paper, we present WOMM (abbreviation for Weak Operational Memory Model) that formally unifies two sources of weak behavior in hardware memory models: reordering of instructions and weakly consistent memory. We show that a large number of optimizations are allowed by WOMM. We also show that WOMM is weaker than a number of hardware memory models. Consequently, if a program behaves correctly under WOMM, it will be correct with respect to those hardware memory models. Hence, WOMM can be used as a formally specified abstraction of the hardware memory models. Moreover; unlike most weak memory models, WOMM is described using operational semantics, making it easy to integrate into a model checker for concurrent programs. We further show that WOMM has an important property - it has sequential consistency semantics for datarace-free programs.
Resumo:
During the last decade, developing countries such as India have been exhibiting rapid increase in human population and vehicles, and increase in road accidents. Inappropriate driving behaviour is considered one of the major causes of road accidents in India as compared to defective geometric design of pavement or mechanical defects in vehicles. It can result in conditions such as lack of lane discipline, disregard to traffic laws, frequent traffic violations, increase in crashes due to self-centred driving, etc. It also demotivates educated drivers from following good driving practices. Hence, improved driver behaviour can be an effective countermeasure to reduce the vulnerability of road users and inhibit crash risks. This article highlights improved driver behaviour through better driver education, driver training and licensing procedures along with good on-road enforcement; as an effective countermeasure to ensure road safety in India. Based on the review and analysis, the article also recommends certain measures pertaining to driver licensing and traffic law enforcement in India aimed at improving road safety.
Resumo:
Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.
Resumo:
The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.