46 resultados para Open circuit potential
em Indian Institute of Science - Bangalore - Índia
Resumo:
On interrupting polarisation, the magnesium anode exhibits a negative overshoot in potential followed by a slow recovery to a steady state value. A model has been proposed to explain the opencircuit potential-time transient in terms of a spontaneous passivation of the metal and the consequent changes in the corrosion potential. Theoretical expressions have been derived for the timedependence of the open-circuit electrode potential. Calculated, potential-time curves thus obtained are in qualitative agreement with experimental data. A possible application of this phenomenon to develop non-destructive quality control tests of Mg, Li and Al-based dry cells has been pointed out.
Resumo:
Open-circuit potential—time transients during the discharge of alkaline porous iron electrodes at various states-of-charge have been studied. From this, it has been possible to arrive at a correlation between the parameters of self-discharge kinetics of the electrode and observed open-circuit potential—recovery time constants. The study provides a method of estimate the state-of-charge of the rechargeable iron electrodes. As a hydrogen evolution reaction inevitably occurs on alkaline iron electrodes, the kinetics of the reaction have also been investigated.
Resumo:
The internal resistance of a stabilized alpha-nickel hydroxide electrode is found to be lower than that of a beta-nickel hydroxide electrode as shown from studies of the open-circuit potential-time transients at all states-of-charge. Nevertheless, the self-discharge rates of the former is higher. Gasometric studies reveal that the charging efficiency of the alpha-nickel hydroxide electrode is higher than that of the beta-nickel hydroxide electrode.
Resumo:
High molecular weight polyaniline (PANI) was synthesized by a combined procedure incorporating various synthesis methods. Temperature and open circuit potential of the reaction mixture were collected to monitor the reaction progress. The polymer is characterized by various techniques including gel permeation chromatography, dynamic light scattering, infrared spectroscopy, solid-state nuclear magnetic resonance, and differential scanning calorimetry for elucidating the molecular architecture obtained by this method. As-synthesized PANI was found to possess high molecular weight, reduced branching, reduced cross-linking, and to predominantly consist of linear polymer chains. This polymer was also found to be more stable in solution form. JV characteristics of as-synthesized PANI films indicate a high current density which is due to increased free pathways and less traps for the charge transport to occur in PANI films. POLYM. ENG. SCI., 2012. (C) 2012 Society of Plastics Engineers
Resumo:
The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.
Resumo:
On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.
Resumo:
A simple and rapid method, based on the open-circuit decay of potential, is described for the determination of the current efficiency with which metals are electrodeposited. The advantages and disadvantages of the method are discussed.
Resumo:
A solid-state sensor for SOx (x = 2, 3) species has been designed using ?-alumina as the solid electrolyte and Na2SO4 as the auxiliary electrode. The measured e.m.f. of the cell Pt, O?2 + SO?2 + SO?3|Na2SO4short parallel?-aluminashort parallelNa2SO4|SO?3 + SO?2 + O?2, PT in the temperature range 700 K to 1150 K agrees well with values calculated using the Nernst equation. The sodium sulphate acts both as a protective covering, preventing direct access of the gaseous SOx species to the ?-alumina electrolyte, and as an auxiliary electrode, converting chemical potentials of SOx species and O2 into an equivalent sodium potential. The open-circuit e.m.f. varies non-linearly with temperature for fixed composition of inlet gas mixtures containing SO2, O2 and Ar. The response time (t0.99) of the cell varies between 1.9 ks at 750 K and 0.06 ks at 1100 K. The e.m.f. response is faster when the partial pressure of SOx at the electrode is increased than when it is decreased.
Resumo:
In this work composites of poly(3-hexylethiophene) (P3HT) and a thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one) (DTCPA) having donor acceptor architecture (DAD) were prepared. Photovoltaic properties of these hybrid composites were evaluated. DTCPA, which is a highly crystalline organic molecule with wide absorption range, was observed to improve the open circuit voltage of the solar cell. Furthermore, DTCPA crystals acts as a nucleating center and increases the molecular ordering of P3HT in the composite. Improved charge separation efficiency was observed by photoluminescence spectroscopy. Because of high built in potential in these devices, large open circuit voltage was observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.
Resumo:
We investigate the thermoelectric (TE) figure-of-merit of a single-layer graphene (SLG) sheet by a physics-based analytical technique. We first develop analytical models of electrical and thermal resistances and the Seebeck coefficient of SLG by considering electron interactions with the in-plane and flexural phonons. Using those models, we show that both the figure-of-merit and the TE efficiency can be substantially increased with the addition of isotope doping as it significantly reduces the phonon-dominated thermal conductivity. In addition, we report that the TE open circuit output voltage and output power depends weakly on the SLG sheet dimensions and sheet concentration in the strongly diffusive regime. Proposed models agree well with the available experimental data and demonstrate the immense potential of graphene for waste-heat recovery application.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented
Resumo:
A novel type of magnesium-air primary cell has been evolved which employs non-polluting and abundantly available materials. The cell is based on the scheme Mg/Mg(NO3)2, NaNO2, H20/Q(C). The magnesium anode utilization is about 90% at a current density of 20 mAcm -2. The anode has been shown to exhibit a low open-circuit corrosion, a relatively uniform pattern of corrosion and a low negative difference effect in the electrolyte developed above as compared to the conventional halide or perchlorate electrolytes. In the usual air-depolarized mode of operation, the cell has been found to be capable of continuous discharge over several months at a constant cell voltage of about 1 V and a current density of 1 mAcm -2 at the cathode. The long service-life capability arises from the formation of a protective film on the porous carbon cathode and fast sedimentation of the anodic product (magnesium hydroxide) in the electrolyte. The cell has a shelf-life in the activated state of about a year due to the low open-circuit corrosion of the anode. These favourable features suggest the practical feasibility of developing economical, long-life, non-reserve magnesium-air ceils for diverse applications using magnesium anodes with a high surface area and porous carbon-air electrodes.
Resumo:
This article presents the analysis and design of a compact multi-layer layer, high selectivity wideband bandpass filter using stub loaded and `U' shaped resonators over a slotted bottom ground plane. While the resonators with folded open circuit stub loadings create the desired bandpass characteristics. the IT shaped resonators reduce the size of filter. The slotted bottom ground plane is used to enhance the coupling to achieve the desired bandwidth. The proposed filter has been analyzed using circuit model, and the results were verified through full wave simulations and measurements. The fabricated filter is compact and measures a size of 18 mm x 25 mm x 1.6 MM. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1387-1389, 2010: Published online in Wiley InterScience (www.interscience.wiley.com).