3 resultados para Onyar (Catalunya : Conca hidrogràfica)
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
In this paper, the classical problem of homogenization of elliptic operators in arbitrary domains with periodically oscillating coefficients is considered. Using Bloch wave decomposition, a new proof of convergence is furnished. It sheds new light and offers an alternate way to view the classical results. In a natural way, this method leads us to work in the Fourier space and thus in a framework dual to the one used by L. Tartar [Problemes d'Homogeneisation dans les Equations aux: Derivees Partielles, Cours Peccot au College de Prance, 1977] in his method of homogenization. Further, this technique offers a nontraditional way of calculating the homogenized coefficients which is easy to implement in the computer.
Resumo:
A model representing the vibrations of a coupled fluid-solid structure is considered. This structure consists of a tube bundle immersed in a slightly compressible fluid. Assuming periodic distribution of tubes, this article describes the asymptotic nature of the vibration frequencies when the number of tubes is large. Our investigation shows that classical homogenization of the problem is not sufficient for this purpose. Indeed, our end result proves that the limit spectrum consists of three parts: the macro-part which comes from homogenization, the micro-part and the boundary layer part. The last two components are new. We describe in detail both macro- and micro-parts using the so-called Bloch wave homogenization method. Copyright (C) 1999 John Wiley & Sons, Ltd.