352 resultados para One-inclusion mistake bounds
em Indian Institute of Science - Bangalore - Índia
Resumo:
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]
Resumo:
in this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X=ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 degrees C recorded a remarkably high value of 7 x 10(-3) Omega(-1) cm(-1), higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At -20 degrees C, the ionic conductivity of (100 -x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 x 10(-5)-4.5 x 10(-4) Omega(-1) cm(-1), approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y -> 0 for LiClO4-SN to a maximum of 0.4MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We obtain stringent bounds in the < r(2)>(K pi)(S)-c plane where these are the scalar radius and the curvature parameters of the scalar K pi form factor, respectively, using analyticity and dispersion relation constraints, the knowledge of the form factor from the well-known Callan-Treiman point m(K)(2)-m(pi)(2), as well as at m(pi)(2)-m(K)(2), which we call the second Callan-Treiman point. The central values of these parameters from a recent determination are accomodated in the allowed region provided the higher loop corrections to the value of th form factor at the second Callan-Treiman point reduce the one-loop result by about 3% with F-K/F-pi = 1.21. Such a variation in magnitude at the second Callan-Treiman point yields 0.12 fm(2) less than or similar to < r(2)>(K pi)(S) less than or similar to 0.21 fm(2) and 0.56 GeV-4 less than or similar to c less than or similar to 1.47 GeV-4 and a strong correlation between them. A smaller value of F-K/F-pi shifts both bounds to lower values.
Resumo:
Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.
Resumo:
We consider bounds for the capacity region of the Gaussian X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. We first classify the XC into two classes, the strong XC and the mixed XC. In the strong XC, either the direct channels are stronger than the cross channels or vice-versa, whereas in the mixed XC, one of the direct channels is stronger than the corresponding cross channel and vice-versa. After this classification, we give outer bounds on the capacity region for each of the two classes. This is based on the idea that when one of the messages is eliminated from the XC, the rate region of the remaining three messages are enlarged. We make use of the Z channel, a system obtained by eliminating one message and its corresponding channel from the X channel, to bound the rate region of the remaining messages. The outer bound to the rate region of the remaining messages defines a subspace in R-+(4) and forms an outer bound to the capacity region of the XC. Thus, the outer bound to the capacity region of the XC is obtained as the intersection of the outer bounds to the four combinations of the rate triplets of the XC. Using these outer bounds on the capacity region of the XC, we derive new sum-rate outer bounds for both strong and mixed Gaussian XCs and compare them with those existing in literature. We show that the sum-rate outer bound for strong XC gives the sum-rate capacity in three out of the four sub-regions of the strong Gaussian XC capacity region. In case of mixed Gaussian XC, we recover the recent results in 11] which showed that the sum-rate capacity is achieved in two out of the three sub-regions of the mixed XC capacity region and give a simple alternate proof of the same.
Resumo:
An n-length block code C is said to be r-query locally correctable, if for any codeword x ∈ C, one can probabilistically recover any one of the n coordinates of the codeword x by querying at most r coordinates of a possibly corrupted version of x. It is known that linear codes whose duals contain 2-designs are locally correctable. In this article, we consider linear codes whose duals contain t-designs for larger t. It is shown here that for such codes, for a given number of queries r, under linear decoding, one can, in general, handle a larger number of corrupted bits. We exhibit to our knowledge, for the first time, a finite length code, whose dual contains 4-designs, which can tolerate a fraction of up to 0.567/r corrupted symbols as against a maximum of 0.5/r in prior constructions. We also present an upper bound that shows that 0.567 is the best possible for this code length and query complexity over this symbol alphabet thereby establishing optimality of this code in this respect. A second result in the article is a finite-length bound which relates the number of queries r and the fraction of errors that can be tolerated, for a locally correctable code that employs a randomized algorithm in which each instance of the algorithm involves t-error correction.
Resumo:
In this paper, we revisit the combinatorial error model of Mazumdar et al. that models errors in high-density magnetic recording caused by lack of knowledge of grain boundaries in the recording medium. We present new upper bounds on the cardinality/rate of binary block codes that correct errors within this model. All our bounds, except for one, are obtained using combinatorial arguments based on hypergraph fractional coverings. The exception is a bound derived via an information-theoretic argument. Our bounds significantly improve upon existing bounds from the prior literature.
Resumo:
Given a Boolean function , we say a triple (x, y, x + y) is a triangle in f if . A triangle-free function contains no triangle. If f differs from every triangle-free function on at least points, then f is said to be -far from triangle-free. In this work, we analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions from those -far from triangle-free. Let the canonical tester for triangle-freeness denotes the algorithm that repeatedly picks x and y uniformly and independently at random from , queries f(x), f(y) and f(x + y), and checks whether f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions -far from triangle-free with constant probability if its query complexity is a tower of 2's whose height is polynomial in . Fox later improved the height of the tower in Green's upper bound to . A trivial lower bound of on the query complexity is immediate. In this paper, we give the first non-trivial lower bound for the number of queries needed. We show that, for every small enough , there exists an integer such that for all there exists a function depending on all n variables which is -far from being triangle-free and requires queries for the canonical tester. We also show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness is at least square root of the query complexity of the corresponding canonical tester. Consequently, this means that any one-sided tester for triangle-freeness must make at least queries.
Resumo:
In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (alpha) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays B-s -> mu(+)mu(-) and b -> s gamma are also considered. We find that low M-A(less than or similar to 350) and high tan beta(greater than or similar to 25) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle alpha similar to 0.1-0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H/A) and charged Higgs boson (H-+/-) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan beta with light additional Higgses (mass <= 600 GeV) are unconstrained by the data, while the regions with tan beta > 20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan beta <= 20 at the high luminosity run of LHC are also discussed, giving special attention to the H -> hh, H/A -> t (t) over bar and H/A -> tau(+)tau(-) decay modes.
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
The title compound, C15H11NO, consists of a planar isoquinolinone group to which a phenyl ring is attached in a twisted fashion [dihedral angle = 39.44 (4)degrees]. The crystal packing is dominated by intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds which define centrosymmetric dimeric entitities.
Resumo:
In the title moleclue, C19H21NO, the 4-piperidone ring adopts a chair conformation in which the two benzene rings and the methyl group attached to C atoms all have equatorial orientations. In the crystal structure, centrosymmetric dimers are formed through weak intermolecular C-H center dot center dot center dot O hydrogen bonds [the dihedral angle between the aromatic rings is 58.51 (5)degrees].