75 resultados para One parameter family
em Indian Institute of Science - Bangalore - Índia
Resumo:
It is maintained that the one-parameter scaling theory is inconsistent with the physics of Anderson localisation.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.
Resumo:
In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper extends some geometric properties of a one-parameter family of relative entropies. These arise as redundancies when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the Kullback-Leibler divergence. They satisfy the Pythagorean property and behave like squared distances. This property, which was known for finite alphabet spaces, is now extended for general measure spaces. Existence of projections onto convex and certain closed sets is also established. Our results may have applications in the Rényi entropy maximization rule of statistical physics.
Resumo:
The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
Transition in the boundary layer on a flat plate is examined from the point of view of intermittent production of turbulent spots. On the hypothesis of localized laminar breakdown, for which there is some expermental evidence, Emmons’ probability calculations can be extended to explain the observed statistical similarity of transition regions. Application of these ideas allows detailed calculations of the boundary layer parameters including mean velocity profiles and skin friction during transition. The mean velocity profiles belong to a universal one-parameter family with the intermittency factor as the parameter. From an examination of experimental data the probable existence of a relation between the transition Reynolds number and the rate of production of the turbulent spots is deduced. A simple new technique for the measurement of the intermittency factor by a Pitot tube is reported.
Resumo:
We first review a general formulation of ray theory and write down the conservation forms of the equations of a weakly nonlinear ray theory (WNLRT) and a shock ray theory (SRT) for a weak shock in a polytropic gas. Then we present a formulation of the problem of sonic boom by a maneuvering aerofoil as a one parameter family of Cauchy problems. The system of equations in conservation form is hyperbolic for a range of values of the parameter and has elliptic nature else where, showing that unlike the leading shock, the trailing shock is always smooth.
Resumo:
The sonic boom at a large distance from its source consists of a leading shock, a trailing shock and a one parameter family of nonlinear wavefronts in between these shocks. A new ray theoretical method using a shock ray theory and a weakly nonlinear lay theory has been used to obtain the shock fronts and wavefronts respectively, for a maneuvering aerofoil in a homogeneous medium. This method introduces a one parameter family of Cauchy problems to calculate the shock and wave fronts emerging from the surface of the aerofoil. These problems are solved numerically to obtain the leading shock front and the nonlinear wavefronts emerging from the front portion of the aerofoil.
Resumo:
Motivated by the need to statically balance the inherent elastic forces in linkages, this paper presents three techniques to statically balance a four-bar linkage loaded by a zero-free-length spring attached between its coupler point and an anchor point on the ground. The number of auxiliary links and balancing springs required for the three techniques is less than or equal to that of the only technique currently in the literature. One of the three techniques does not require auxiliary links. In these techniques, the set of values for the spring constants and the ground-anchor point of the balancing springs can vary over a one-parameter family. Thrice as many balancing choices are available when the cognates are considered. The ensuing numerous options enable a user to choose the most practical solution. To facilitate the evaluation of the balancing choices for all the cognates, Roberts-Chebyshev cognate theorem is extended to statically balanced four-bar linkages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We discuss the analytic extension property of the Schrodinger propagator for the Heisenberg sublaplacian and some related operators. The result for the sublaplacian is proved by interpreting the sublaplacian as a direct integral of an one parameter family of dilated special Hermite operators.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.
Resumo:
We present a complete solution to the problem of coherent-mode decomposition of the most general anisotropic Gaussian Schell-model (AGSM) beams, which constitute a ten-parameter family. Our approach is based on symmetry considerations. Concepts and techniques familiar from the context of quantum mechanics in the two-dimensional plane are used to exploit the Sp(4, R) dynamical symmetry underlying the AGSM problem. We take advantage of the fact that the symplectic group of first-order optical system acts unitarily through the metaplectic operators on the Hilbert space of wave amplitudes over the transverse plane, and, using the Iwasawa decomposition for the metaplectic operator and the classic theorem of Williamson on the normal forms of positive definite symmetric matrices under linear canonical transformations, we demonstrate the unitary equivalence of the AGSM problem to a separable problem earlier studied by Li and Wolf [Opt. Lett. 7, 256 (1982)] and Gori and Guattari [Opt. Commun. 48, 7 (1983)]. This conn ction enables one to write down, almost by inspection, the coherent-mode decomposition of the general AGSM beam. A universal feature of the eigenvalue spectrum of the AGSM family is noted.